Avaniyapuram Kannan Murugan

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3878278/publications.pdf

Version: 2024-02-01

#	Article	IF	CITATIONS
1	Linc-ROR genetic variants are associated with the advanced disease in oral squamous cell carcinoma. Archives of Oral Biology, 2022, 139, 105428.	0.8	3
2	High incidence of PI3K pathway gene mutations in South Indian cervical cancers. Cancer Genetics, 2022, 264-265, 100-108.	0.2	0
3	Papillary Thyroid Cancer and a <i>TERT</i> Promotor Mutation-positive Paraganglioma in a Patient With a Germline <i>SDHB</i> Mutation. Journal of the Endocrine Society, 2022, 6, .	0.1	2
4	Gliomas: Genetic alterations, mechanisms of metastasis, recurrence, drug resistance, and recent trends in molecular therapeutic options. Biochemical Pharmacology, 2022, 201, 115090.	2.0	12
5	APOBEC: A molecular driver in cervical cancer pathogenesis. Cancer Letters, 2021, 496, 104-116.	3.2	79
6	Single nucleotide polymorphisms in matrix metalloproteinase 2 (MMP2) enhance BRAFV600E mutation-mediated oncogenicity and invasiveness of papillary thyroid cancer cells. Endocrine-Related Cancer, 2021, 28, 273-289.	1.6	5
7	SARS-CoV-2 plays a pivotal role in inducing hyperthyroidism of Graves' disease. Endocrine, 2021, 73, 243-254.	1.1	36
8	Analysis of <i>ALK</i> , <i>IDH1</i> , <i>IDH2</i> and <i>MMP8</i> somatic mutations in differentiated thyroid cancers. Molecular and Clinical Oncology, 2021, 15, 210.	0.4	4
9	SARS-CoV-2: Emerging Role in the Pathogenesis of Various Thyroid Diseases. Journal of Inflammation Research, 2021, Volume 14, 6191-6221.	1.6	35
10	Association between functional TERT promoter polymorphism rs2853669 and cervical cancer risk in South Indian women. Molecular and Clinical Oncology, 2020, 12, 485-494.	0.4	8
11	mTOR: Role in cancer, metastasis and drug resistance. Seminars in Cancer Biology, 2019, 59, 92-111.	4.3	299
12	Familial paraganglioma due to a novel SDHB mutation: familial phenotypic heterogeneity and a potentially novel manifestation. International Journal of Endocrine Oncology, 2019, 6, IJE12.	0.4	1
13	RAS mutations in human cancers: Roles in precision medicine. Seminars in Cancer Biology, 2019, 59, 23-35.	4.3	85
14	Identification and characterization of two novel oncogenic mTOR mutations. Oncogene, 2019, 38, 5211-5226.	2.6	24
15	Lung Metastasis in Pediatric Thyroid Cancer: Radiological Pattern, Molecular Genetics, Response to Therapy, and Outcome. Journal of Clinical Endocrinology and Metabolism, 2019, 104, 103-110.	1.8	28
16	Absence of EIF1AX, PPM1D, and CHEK2 mutations reported in Thyroid Cancer Genome Atlas (TCGA) in a large series of thyroid cancer. Endocrine, 2019, 63, 94-100.	1.1	14
17	GPCR-mediated PI3K pathway mutations in pediatric and adult thyroid cancer. Oncotarget, 2019, 10, 4107-4124.	0.8	5
18	Dysregulation of miR-200 family microRNAs and epithelial-mesenchymal transition markers in oral squamous cell carcinoma. Oncology Letters, 2018, 15, 649-657.	0.8	55

#	Article	IF	CITATIONS
19	Mutational analysis of rare subtypes of congenital adrenal hyperplasia in a highly inbred population. Molecular and Cellular Endocrinology, 2018, 461, 105-111.	1.6	18
20	Long noncoding RNAs: emerging players in thyroid cancer pathogenesis. Endocrine-Related Cancer, 2018, 25, R59-R82.	1.6	108
21	Comprehensive analysis of aberrantly expressed lncRNAs and construction of ceRNA network in gastric cancer. Oncotarget, 2018, 9, 18386-18399.	0.8	43
22	LncRNA OIP5-AS1 is overexpressed in undifferentiated oral tumors and integrated analysis identifies as a downstream effector of stemness-associated transcription factors. Scientific Reports, 2018, 8, 7018.	1.6	55
23	Absence of the frequently reported <i><scp>PIK</scp>3<scp>CA</scp></i> , <i><scp>CASP</scp>8,</i> and <i><scp>NOTCH</scp>1</i> mutations in South Indian oral cancers. Oral Diseases, 2017, 23, 669-673.	1.5	8
24	Long non-coding RNA CCAT1 is overexpressed in oral squamous cell carcinomas and predicts poor prognosis. Biomedical Reports, 2017, 6, 455-462.	0.9	58
25	A high rate of novel CYP11B1 mutations in Saudi Arabia. Journal of Steroid Biochemistry and Molecular Biology, 2017, 174, 217-224.	1.2	7
26	Serum sonic hedgehog (SHH) and interleukin-(IL-6) as dual prognostic biomarkers in progressive metastatic breast cancer. Scientific Reports, 2017, 7, 1796.	1.6	51
27	Single Point Mutations in Pediatric Differentiated Thyroid Cancer. Thyroid, 2017, 27, 189-196.	2.4	54
28	Genotyping of <i>CYP2C9</i> and <i>VKORC1</i> polymorphisms predicts south Indian patients with deep vein thrombosis as fast metabolizers of warfarin/acenocoumarin. Drug Discoveries and Therapeutics, 2017, 11, 198-205.	0.6	3
29	Kirsten Ras* oncogene: Significance of its discovery in human cancer research. Oncotarget, 2016, 7, 46717-46733.	0.8	57
30	MicroRNAs: Modulators of the <i>Ras</i> Oncogenes in Oral Cancer. Journal of Cellular Physiology, 2016, 231, 1424-1431.	2.0	22
31	Classical V600E and other non-hotspot BRAF mutations in adult differentiated thyroid cancer. Journal of Translational Medicine, 2016, 14, 204.	1.8	19
32	TERT Promoter Mutations in Thyroid Cancer. Hormones and Cancer, 2016, 7, 165-177.	4.9	62
33	<i>HABP2</i> Gene Mutations Do Not Cause Familial or Sporadic Non-Medullary Thyroid Cancer in a Highly Inbred Middle Eastern Population. Thyroid, 2016, 26, 667-671.	2.4	33
34	Uncommon <i>TERT</i> Promoter Mutations in Pediatric Thyroid Cancer. Thyroid, 2016, 26, 235-241.	2.4	31
35	TERT promoter hot spot mutations are frequent in Indian cervical and oral squamous cell carcinomas. Tumor Biology, 2016, 37, 7907-7913.	0.8	32
36	Absence of somatic mutations of the mTOR gene in differentiated thyroid cancer. Meta Gene, 2015, 6, 69-71.	0.3	12

#	Article	IF	CITATIONS
37	TERT promoter mutations in thyroid cancer: a report from a Middle Eastern population. Endocrine-Related Cancer, 2015, 22, 901-908.	1.6	42
38	<i>TERT</i> Promoter Mutations and Their Association with <i>BRAF</i> V600E Mutation and Aggressive Clinicopathological Characteristics of Thyroid Cancer. Journal of Clinical Endocrinology and Metabolism, 2014, 99, E1130-E1136.	1.8	262
39	Histone deacetylation of NIS promoter underlies BRAF V600E-promoted NIS silencing in thyroid cancer. Endocrine-Related Cancer, 2014, 21, 161-173.	1.6	83
40	<i>BRAF</i> V600E and <i>TERT</i> Promoter Mutations Cooperatively Identify the Most Aggressive Papillary Thyroid Cancer With Highest Recurrence. Journal of Clinical Oncology, 2014, 32, 2718-2726.	0.8	595
41	Genetic deregulation of the PIK3CA oncogene in oral cancer. Cancer Letters, 2013, 338, 193-203.	3.2	59
42	Identification of RASAL1 as a Major Tumor Suppressor Gene in Thyroid Cancer. Journal of the National Cancer Institute, 2013, 105, 1617-1627.	3.0	81
43	Highly prevalent TERT promoter mutations in aggressive thyroid cancers. Endocrine-Related Cancer, 2013, 20, 603-610.	1.6	500
44	Mutations in Critical Domains Confer the Human mTOR Gene Strong Tumorigenicity*. Journal of Biological Chemistry, 2013, 288, 6511-6521.	1.6	40
45	Mutational analysis of the GNA11, MMP27, FGD1, TRRAP and GRM3 genes in thyroid cancer. Oncology Letters, 2013, 6, 437-441.	0.8	11
46	Single Nucleotide Polymorphism rs17849071 G/T in the PIK3CA Gene Is Inversely Associated with Follicular Thyroid Cancer and PIK3CA Amplification. PLoS ONE, 2012, 7, e49192.	1.1	17
47	Ras oncogenes in oral cancer: The past 20 years. Oral Oncology, 2012, 48, 383-392.	0.8	101
48	Uncommon GNAQ, MMP8, AKT3, EGFR, and PIK3R1 Mutations in Thyroid Cancers. Endocrine Pathology, 2011, 22, 97-102.	5.2	33
49	Anaplastic Thyroid Cancers Harbor Novel Oncogenic Mutations of the <i>ALK</i> Gene. Cancer Research, 2011, 71, 4403-4411.	0.4	190
50	Identification and functional characterization of isocitrate dehydrogenase 1 (IDH1) mutations in thyroid cancer. Biochemical and Biophysical Research Communications, 2010, 393, 555-559.	1.0	122
51	MEK1 mutations, but not ERK2 mutations, occur in melanomas and colon carcinomas, but none in thyroid carcinomas. Cell Cycle, 2009, 8, 2122-2124.	1.3	73
52	Detection of two novel mutations and relatively high incidence of H-RAS mutations in Vietnamese oral cancer. Oral Oncology, 2009, 45, e161-e166.	0.8	33
53	SWAPâ€70 is important for invasive phenotypes of mouse embryo fibroblasts transformed by vâ€&rc. IUBMB Life, 2008, 60, 236-240.	1.5	12
54	Oncogenic mutations of the PIK3CA gene in head and neck squamous cell carcinomas. International Journal of Oncology, 2008, , .	1.4	36

#	Article	IF	CITATIONS
55	Oncogenic mutations of the PIK3CA gene in head and neck squamous cell carcinomas. International Journal of Oncology, 2008, 32, 101-11.	1.4	51
56	ERK2 CD domain mutation from a human cancer cell line enhanced anchorage-independent cell growth and abnormality in Drosophila. Oncology Reports, 2008, 20, 957-62.	1.2	13
57	ERK2 CD domain mutation from a human cancer cell line enhanced anchorage-independent cell growth and abnormality in Drosophila. Oncology Reports, 1994, 20, 957.	1.2	9
58	Highly prevalent TERT promoter mutations in aggressive thyroid cancers. Endocrine Abstracts, 0, , .	0.0	0