Robert E Maclaren

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3878205/publications.pdf

Version: 2024-02-01

#	Article	IF	CITATIONS
1	Retinal gene therapy in patients with choroideremia: initial findings from a phase 1/2 clinical trial. Lancet, The, 2014, 383, 1129-1137.	6.3	689
2	Effective gene therapy with nonintegrating lentiviral vectors. Nature Medicine, 2006, 12, 348-353.	15.2	416
3	Comprehensive Rare Variant Analysis via Whole-Genome Sequencing to Determine the Molecular Pathology of Inherited Retinal Disease. American Journal of Human Genetics, 2017, 100, 75-90.	2.6	343
4	Subretinal Visual Implant Alpha IMS – Clinical trial interim report. Vision Research, 2015, 111, 149-160.	0.7	324
5	Reversal of end-stage retinal degeneration and restoration of visual function by photoreceptor transplantation. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, 1101-1106.	3.3	229
6	Half-Dose Photodynamic Therapy versus High-Density Subthreshold Micropulse Laser Treatment in Patients with Chronic Central Serous Chorioretinopathy. Ophthalmology, 2018, 125, 1547-1555.	2.5	209
7	Initial results from a first-in-human gene therapy trial on X-linked retinitis pigmentosa caused by mutations in RPGR. Nature Medicine, 2020, 26, 354-359.	15.2	208
8	The Drusenlike Phenotype in Aging <i>Ccl2</i> -Knockout Mice Is Caused by an Accelerated Accumulation of Swollen Autofluorescent Subretinal Macrophages. , 2009, 50, 5934.		186
9	Visual Acuity after Retinal Gene Therapy for Choroideremia. New England Journal of Medicine, 2016, 374, 1996-1998.	13.9	185
10	Transplanted photoreceptor precursors transfer proteins to host photoreceptors by a mechanism of cytoplasmic fusion. Nature Communications, 2016, 7, 13537.	5.8	180
11	CRISPR-Cas9 DNA Base-Editing and Prime-Editing. International Journal of Molecular Sciences, 2020, 21, 6240.	1.8	179
12	Interim Results of a Multicenter Trial with the New Electronic Subretinal Implant Alpha AMS in 15 Patients Blind from Inherited Retinal Degenerations. Frontiers in Neuroscience, 2017, 11, 445.	1.4	148
13	Beneficial effects on vision in patients undergoing retinal gene therapy for choroideremia. Nature Medicine, 2018, 24, 1507-1512.	15.2	140
14	Retinal stem cell transplantation: Balancing safety and potential. Progress in Retinal and Eye Research, 2020, 75, 100779.	7.3	137
15	Autologous Transplantation of the Retinal Pigment Epithelium and Choroid in the Treatment of Neovascular Age-Related Macular Degeneration. Ophthalmology, 2007, 114, 561-570.e2.	2.5	134
16	Assessment of the Electronic Retinal Implant Alpha AMS in Restoring Vision to Blind Patients with End-Stage Retinitis Pigmentosa. Ophthalmology, 2018, 125, 432-443.	2.5	133
17	Two-Year Results After AAV2-Mediated Gene Therapy for Choroideremia: The Alberta Experience. American Journal of Ophthalmology, 2018, 193, 130-142.	1.7	133
18	Function of human pluripotent stem cell-derived photoreceptor progenitors in blind mice. Scientific Reports, 2016, 6, 29784.	1.6	128

#	Article	IF	CITATIONS
19	Choroideremia Gene Therapy Phase 2 Clinical Trial: 24-Month Results. American Journal of Ophthalmology, 2019, 197, 65-73.	1.7	119
20	Long-Term Survival of Photoreceptors Transplanted into the Adult Murine Neural Retina Requires Immune Modulation. Stem Cells, 2010, 28, 1997-2007.	1.4	117
21	Clinical applications of retinal gene therapy. Progress in Retinal and Eye Research, 2013, 32, 22-47.	7.3	103
22	Rescue of the Stargardt phenotype in <i>Abca4</i> knockout mice through inhibition of vitamin A dimerization. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, 8415-8420.	3.3	103
23	Chronic central serous chorioretinopathy: long-term follow-up and vision-related quality of life. Clinical Ophthalmology, 2017, Volume 11, 39-46.	0.9	102
24	Will Nanotechnology Bring New Hope for Gene Delivery?. Trends in Biotechnology, 2017, 35, 434-451.	4.9	97
25	Long-term Results of Submacular Surgery Combined with Macular Translocation of the Retinal Pigment Epithelium in Neovascular Age-Related Macular Degeneration. Ophthalmology, 2005, 112, 2081-2087.	2.5	96
26	Biometry and Formula Accuracy With Intraocular Lenses Used for Cataract Surgery in Extreme Hyperopia. American Journal of Ophthalmology, 2007, 143, 920-931.e3.	1.7	95
27	Fundus Autofluorescence in the <i>Abca4^{â^'/â^'}</i> Mouse Model of Stargardt Disease—Correlation With Accumulation of A2E, Retinal Function, and Histology. , 2013, 54, 5602.		95
28	In Contrast to AAV-Mediated Cntf Expression, AAV-Mediated Gdnf Expression Enhances Gene Replacement Therapy in Rodent Models of Retinal Degeneration. Molecular Therapy, 2006, 14, 700-709.	3.7	87
29	Codon-Optimized RPGR Improves Stability and Efficacy of AAV8 Gene Therapy in Two Mouse Models of X-Linked Retinitis Pigmentosa. Molecular Therapy, 2017, 25, 1854-1865.	3.7	86
30	Comparative Analysis of Progenitor Cells Isolated from the Iris, Pars Plana, and Ciliary Body of the Adult Porcine Eye. Stem Cells, 2007, 25, 2430-2438.	1.4	82
31	Functional expression of Rab escort protein 1 following AAV2-mediated gene delivery in the retina of choroideremia mice and human cells ex vivo. Journal of Molecular Medicine, 2013, 91, 825-837.	1.7	81
32	Novel gene function revealed by mouse mutagenesis screens for models of age-related disease. Nature Communications, 2016, 7, 12444.	5.8	79
33	Retinal Pigment Epithelium Defects Accelerate Photoreceptor Degeneration in Cell Type–Specific Knockout Mouse Models of Choroideremia. , 2010, 51, 4913.		78
34	Characterizing the Natural History of Visual Function in Choroideremia Using Microperimetry and Multimodal Retinal Imaging. , 2017, 58, 5575.		77
35	Induced pluripotent stem cell therapies for retinal disease. Current Opinion in Neurology, 2010, 23, 4-9.	1.8	74
36	Correlation of Optical Coherence Tomography and Autofluorescence in the Outer Retina and Choroid of Patients With Choroideremia. , 2016, 57, 3674.		72

#	Article	IF	CITATIONS
37	An AAV Dual Vector Strategy Ameliorates the Stargardt Phenotype in Adult <i>Abca4^{â^'/â^'}</i> Mice. Human Gene Therapy, 2019, 30, 590-600.	1.4	72
38	The Spectrum of CHM Gene Mutations in Choroideremia and Their Relationship to Clinical Phenotype. , 2016, 57, 6033.		71
39	Outcomes of phacoemulsification and intraocular lens implantation in microphthalmos and nanophthalmos. Journal of Cataract and Refractive Surgery, 2013, 39, 87-96.	0.7	66
40	CNTF Gene Therapy Confers Lifelong Neuroprotection in a Mouse Model of Human Retinitis Pigmentosa. Molecular Therapy, 2015, 23, 1308-1319.	3.7	66
41	Recessive Mutations in <i>TSPAN12</i> Cause Retinal Dysplasia and Severe Familial Exudative Vitreoretinopathy (FEVR). , 2012, 53, 2873.		64
42	Efficacy and Safety of Retinal Gene Therapy Using Adeno-Associated Virus Vector for Patients With Choroideremia. JAMA Ophthalmology, 2019, 137, 1247.	1.4	64
43	Implantation of the Black Diaphragm Intraocular Lens in Congenital and Traumatic Aniridia. Ophthalmology, 2008, 115, 1705-1712.	2.5	62
44	Gene therapy for retinal disease. Translational Research, 2013, 161, 241-254.	2.2	62
45	A Qualitative and Quantitative Assessment of Fundus Autofluorescence Patterns in Patients With Choroideremia. , 2016, 57, 4498.		62
46	Long-term restoration of visual function in end-stage retinal degeneration using subretinal human melanopsin gene therapy. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, 11211-11216.	3.3	62
47	Detailed Clinical Phenotype and Molecular Genetic Findings in <i>CLN3</i> -Associated Isolated Retinal Degeneration. JAMA Ophthalmology, 2017, 135, 749.	1.4	61
48	Gene Therapy and Stem Cell Transplantation in Retinal Disease: The New Frontier. Ophthalmology, 2016, 123, S98-S106.	2.5	59
49	Optimization of In Vivo Confocal Autofluorescence Imaging of the Ocular Fundus in Mice and Its Application to Models of Human Retinal Degeneration. , 2012, 53, 1066.		56
50	Subretinal delivery of adenoâ€associated virus serotype 2 results in minimal immune responses that allow repeat vector administration in immunocompetent mice. Journal of Gene Medicine, 2009, 11, 486-497.	1.4	55
51	Differential Modulation of Retinal Degeneration by Ccl2 and Cx3cr1 Chemokine Signalling. PLoS ONE, 2012, 7, e35551.	1.1	54
52	Gene Therapy for Choroideremia Using an Adeno-Associated Viral (AAV) Vector. Cold Spring Harbor Perspectives in Medicine, 2015, 5, a017293-a017293.	2.9	53
53	Translating Induced Pluripotent Stem Cells from Bench to Bedside: Application to Retinal Diseases. Current Gene Therapy, 2013, 13, 139-151.	0.9	52
54	Measurement and Reproducibility of Preserved Ellipsoid Zone Area and Preserved Retinal Pigment Epithelium Area in Eyes With Choroideremia. American Journal of Ophthalmology, 2017, 179, 110-117.	1.7	51

#	Article	IF	CITATIONS
55	Inclusion of the Woodchuck Hepatitis Virus Posttranscriptional Regulatory Element Enhances AAV2-Driven Transduction of Mouse and Human Retina. Molecular Therapy - Nucleic Acids, 2017, 6, 198-208.	2.3	51
56	Variations in Opsin Coding Sequences Cause X-Linked Cone Dysfunction Syndrome with Myopia and Dichromacy. , 2013, 54, 1361.		50
57	Stem cells as a therapeutic tool for the blind: biology and future prospects. Proceedings of the Royal Society B: Biological Sciences, 2011, 278, 3009-3016.	1.2	49
58	Evaluation of an Optimized Injection System for Retinal Gene Therapy in Human Patients. Human Gene Therapy Methods, 2016, 27, 150-158.	2.1	49
59	Biometry accuracy using zero- and negative-powered intraocular lenses. Journal of Cataract and Refractive Surgery, 2005, 31, 280-290.	0.7	48
60	Correlation of Retinal Structure and Function in Choroideremia Carriers. Ophthalmology, 2015, 122, 1274-1276.	2.5	47
61	CHANGES IN RETINAL SENSITIVITY AFTER GENE THERAPY IN CHOROIDEREMIA. Retina, 2020, 40, 160-168.	1.0	47
62	Adeno-associated Virus (AAV) Dual Vector Strategies for Gene Therapy Encoding Large Transgenes. Yale Journal of Biology and Medicine, 2017, 90, 611-623.	0.2	47
63	Longâ€ŧerm visual and microperimetry outcomes following autologous retinal pigment epithelium choroid graft for neovascular ageâ€related macular degeneration. Clinical and Experimental Ophthalmology, 2009, 37, 275-285.	1.3	46
64	Comprehensive Cancer-Predisposition Gene Testing in an Adult Multiple Primary Tumor Series Shows a Broad Range of Deleterious Variants and Atypical Tumor Phenotypes. American Journal of Human Genetics, 2018, 103, 3-18.	2.6	46
65	RNA Editing as a Therapeutic Approach for Retinal Gene Therapy Requiring Long Coding Sequences. International Journal of Molecular Sciences, 2020, 21, 777.	1.8	46
66	Surgical Technique for Subretinal Gene Therapy in Humans with Inherited Retinal Degeneration. Retina, 2019, 39, S2-S8.	1.0	45
67	Focal and Diffuse Chronic Central Serous Chorioretinopathy Treated With Half-Dose Photodynamic Therapy or Subthreshold Micropulse Laser: PLACE Trial Report No. 3. American Journal of Ophthalmology, 2019, 205, 1-10.	1.7	44
68	Antisense oligonucleotide therapeutics in clinical trials for the treatment of inherited retinal diseases. Expert Opinion on Investigational Drugs, 2020, 29, 1163-1170.	1.9	44
69	A Genetic Case-Control Study Confirms the Implication of <i>SMAD7</i> and <i>TNF Locus</i> in the Development of Proliferative Vitreoretinopathy. , 2013, 54, 1665.		43
70	Clinical and Molecular Characterization of <i>PROM1</i> -Related Retinal Degeneration. JAMA Network Open, 2019, 2, e195752.	2.8	43
71	Comparing half-dose photodynamic therapy with high-density subthreshold micropulse laser treatment in patients with chronic central serous chorioretinopathy (the PLACE trial): study protocol for a randomized controlled trial. Trials, 2015, 16, 419.	0.7	41
72	Structural and Functional Recovery Following Limited Iatrogenic Macular Detachment for Retinal Gene Therapy. JAMA Ophthalmology, 2017, 135, 234.	1.4	41

#	Article	IF	CITATIONS
73	Macular Function Assessed by Microperimetry in Patients with Enhanced S-Cone Syndrome. Ophthalmology, 2010, 117, 1199-1206.e1.	2.5	40
74	Recent advances and future prospects in choroideremia. Clinical Ophthalmology, 2015, 9, 2195.	0.9	40
75	CNTF gene transfer protects ganglion cells in rat retinae undergoing focal injury and branch vessel occlusion. Experimental Eye Research, 2006, 83, 1118-1127.	1.2	38
76	The p53 Codon 72 Polymorphism (rs1042522) Is Associated with Proliferative Vitreoretinopathy. Ophthalmology, 2013, 120, 623-628.	2.5	38
77	Assessment of Tropism and Effectiveness of New Primate-Derived Hybrid Recombinant AAV Serotypes in the Mouse and Primate Retina. PLoS ONE, 2013, 8, e60361.	1.1	38
78	MonoallelicABCA4Mutations Appear Insufficient to Cause Retinopathy: A Quantitative Autofluorescence Study. , 2015, 56, 8179.		38
79	Exploring the Variable Phenotypes of RPGR Carrier Females in Assessing their Potential for Retinal Gene Therapy. Genes, 2018, 9, 643.	1.0	37
80	De Novo Truncating Mutations in WASF1 Cause Intellectual Disability with Seizures. American Journal of Human Genetics, 2018, 103, 144-153.	2.6	36
81	Nonâ€viral retinal gene therapy: a review. Clinical and Experimental Ophthalmology, 2012, 40, 39-47.	1.3	35
82	The T309G MDM2 Gene Polymorphism Is a Novel Risk Factor for Proliferative Vitreoretinopathy. PLoS ONE, 2013, 8, e82283.	1.1	35
83	Gene therapy for the treatment of X-linked retinitis pigmentosa. Expert Opinion on Orphan Drugs, 2018, 6, 167-177.	0.5	35
84	Genome-wide association study identifies genetic risk underlying primary rhegmatogenous retinal detachment. Human Molecular Genetics, 2013, 22, 3174-3185.	1.4	34
85	Pathogenic mechanisms and the prospect of gene therapy for choroideremia. Expert Opinion on Orphan Drugs, 2015, 3, 787-798.	0.5	34
86	Optogenetic Gene Therapy for the Degenerate Retina: Recent Advances. Frontiers in Neuroscience, 2020, 14, 570909.	1.4	34
87	Isoforms of Melanopsin Mediate Different Behavioral Responses to Light. Current Biology, 2015, 25, 2430-2434.	1.8	32
88	Retinal Degeneration in Choroideremia follows an Exponential Decay Function. Ophthalmology, 2018, 125, 1122-1124.	2.5	32
89	Molecular Strategies for RPGR Gene Therapy. Genes, 2019, 10, 674.	1.0	31
90	Absence of Neuroplastin-65 Affects Synaptogenesis in Mouse Inner Hair Cells and Causes Profound Hearing Loss. Journal of Neuroscience, 2016, 36, 222-234.	1.7	30

#	Article	IF	CITATIONS
91	VASCULAR ALTERATIONS REVEALED WITH OPTICAL COHERENCE TOMOGRAPHY ANGIOGRAPHY IN PATIENTS WITH CHOROIDEREMIA. Retina, 2019, 39, 1200-1205.	1.0	30
92	Crossover to Photodynamic Therapy or Micropulse Laser After Failure of Primary Treatment of Chronic Central Serous Chorioretinopathy: The REPLACE Trial. American Journal of Ophthalmology, 2020, 216, 80-89.	1.7	30
93	Bioengineering strategies for restoring vision. Nature Biomedical Engineering, 2023, 7, 387-404.	11.6	30
94	Selective Automated Perimetry Under Photopic, Mesopic, and Scotopic Conditions: Detection Mechanisms and Testing Strategies. Translational Vision Science and Technology, 2016, 5, 10.	1.1	29
95	Functional expression of complement factor I following AAV-mediated gene delivery in the retina of mice and human cells. Gene Therapy, 2021, 28, 265-276.	2.3	29
96	Choroideremia: molecular mechanisms and development of AAV gene therapy. Expert Opinion on Biological Therapy, 2018, 18, 807-820.	1.4	28
97	Monitoring progression of retinitis pigmentosa: current recommendations and recent advances. Expert Opinion on Orphan Drugs, 2020, 8, 67-78.	0.5	28
98	Leber Congenital Amaurosis Associated with AIPL1: Challenges in Ascribing Disease Causation, Clinical Findings, and Implications for Gene Therapy. PLoS ONE, 2012, 7, e32330.	1.1	28
99	Assessment of Cone Survival in Response to CNTF, GDNF, and VEGF _{165b} in a Novel Ex Vivo Model of End-Stage Retinitis Pigmentosa. , 2011, 52, 7340.		26
100	Single residue AAV capsid mutation improves transduction of photoreceptors in the Abca4â^'/â^' mouse and bipolar cells in the rd1 mouse and human retina ex vivo. Gene Therapy, 2016, 23, 767-774.	2.3	26
101	Biallelic Mutation of ARHGEF18, Involved in the Determination of Epithelial Apicobasal Polarity, Causes Adult-Onset Retinal Degeneration. American Journal of Human Genetics, 2017, 100, 334-342.	2.6	26
102	Optimisation of dark adaptation time required for mesopic microperimetry. British Journal of Ophthalmology, 2019, 103, 1092-1098.	2.1	26
103	Low luminance visual acuity as a clinical measure and clinical trial outcome measure: a scoping review. Ophthalmic and Physiological Optics, 2021, 41, 213-223.	1.0	26
104	Analysis of Pathogenic Variants Correctable With CRISPR Base Editing Among Patients With Recessive Inherited Retinal Degeneration. JAMA Ophthalmology, 2021, 139, 319.	1.4	26
105	Therapy Approaches for Stargardt Disease. Biomolecules, 2021, 11, 1179.	1.8	26
106	Neuroprotective Gene Therapy for the Treatment of Inherited Retinal Degeneration. Current Gene Therapy, 2007, 7, 434-445.	0.9	25
107	Effects of pupil dilation on MAIA microperimetry. Clinical and Experimental Ophthalmology, 2017, 45, 489-495.	1.3	25
108	Implantation, removal and replacement of subretinal electronic implants for restoration of vision in patients with retinitis pigmentosa. Current Opinion in Ophthalmology, 2018, 29, 239-247.	1.3	25

#	Article	IF	CITATIONS
109	Enhancement of Adeno-Associated Virus-Mediated Gene Therapy Using Hydroxychloroquine in Murine and Human Tissues. Molecular Therapy - Methods and Clinical Development, 2019, 14, 77-89.	1.8	25
110	An Economic Evaluation of Voretigene Neparvovec for the Treatment of Biallelic RPE65-Mediated Inherited Retinal Dystrophies in the UK. Advances in Therapy, 2020, 37, 1233-1247.	1.3	25
111	Outcome Measures Used in Ocular Gene Therapy Trials: A Scoping Review of Current Practice. Frontiers in Pharmacology, 2019, 10, 1076.	1.6	24
112	Immunomodulatory Effects of Hydroxychloroquine and Chloroquine in Viral Infections and Their Potential Application in Retinal Gene Therapy. International Journal of Molecular Sciences, 2020, 21, 4972.	1.8	24
113	Macular Hole Surgery in Patients with End-stage Choroideremia. Ophthalmology, 2013, 120, 1592-1596.	2.5	23
114	Non-Image-Forming Light Driven Functions Are Preserved in a Mouse Model of Autosomal Dominant Optic Atrophy. PLoS ONE, 2013, 8, e56350.	1.1	23
115	Transcorneal electrical stimulation for the treatment of retinitis pigmentosa: results from the TESOLAUK trial. BMJ Open Ophthalmology, 2017, 2, e000096.	0.8	23
116	Near-Infrared Autofluorescence in Choroideremia: Anatomic and Functional Correlations. American Journal of Ophthalmology, 2019, 199, 19-27.	1.7	23
117	AAV Induced Expression of Human Rod and Cone Opsin in Bipolar Cells of a Mouse Model of Retinal Degeneration. BioMed Research International, 2021, 2021, 1-8.	0.9	23
118	Genome-Editing Strategies for Treating Human Retinal Degenerations. Human Gene Therapy, 2021, 32, 247-259.	1.4	23
119	Expression of myelin proteins in the opossum optic nerve: Late appearance of inhibitors implicates an earlier non-myelin factor in preventing ganglion cell regeneration. Journal of Comparative Neurology, 1996, 372, 27-36.	0.9	22
120	X-linked cone dystrophy and colour vision deficiency arising from a missense mutation in a hybrid L/M cone opsin gene. Vision Research, 2013, 80, 41-50.	0.7	22
121	Vesicular Stomatitis Virus Glycoprotein– and Venezuelan Equine Encephalitis Virus-Derived Glycoprotein–Pseudotyped Lentivirus Vectors Differentially Transduce Corneal Endothelium, Trabecular Meshwork, and Human Photoreceptors. Human Gene Therapy, 2014, 25, 50-62.	1.4	22
122	CRISPR Interference–Potential Application in Retinal Disease. International Journal of Molecular Sciences, 2020, 21, 2329.	1.8	22
123	Responsiveness of Choroidal Neovascular Membranes in Patients With R345W Mutation in Fibulin 3 (Doyne Honeycomb Retinal Dystrophy) to Anti–Vascular Endothelial Growth Factor Therapy. JAMA Ophthalmology, 2011, 129, 1626.	2.6	21
124	Predicting proliferative vitreoretinopathy: temporal and external validation of models based on genetic and clinical variables. British Journal of Ophthalmology, 2015, 99, 41-48.	2.1	21
125	High Symmetry of Visual Acuity and Visual Fields in <i>RPGR</i> -Linked Retinitis Pigmentosa. , 2017, 58, 4457.		21
126	First-in-Human Robot-Assisted Subretinal Drug Delivery Under Local Anesthesia. American Journal of Ophthalmology, 2022, 237, 104-113.	1.7	21

#	Article	IF	CITATIONS
127	Specific deficits in visual electrophysiology in a mouse model of dominant optic atrophy. Experimental Eye Research, 2011, 93, 771-777.	1.2	20
128	Functional Defects in Color Vision in Patients With Choroideremia. American Journal of Ophthalmology, 2015, 160, 822-831.e3.	1.7	20
129	Impact of Vital Dyes on Cell Viability and Transduction Efficiency of AAV Vectors Used in Retinal Gene Therapy Surgery: An In Vitro and In Vivo Analysis. Translational Vision Science and Technology, 2017, 6, 4.	1.1	20
130	Differential roles for cryptochromes in the mammalian retinal clock. FASEB Journal, 2018, 32, 4302-4314.	0.2	20
131	RHOQ is induced by DLL4 and regulates angiogenesis by determining the intracellular route of the Notch intracellular domain. Angiogenesis, 2020, 23, 493-513.	3.7	20
132	Quantitative assessment of barriers to the clinical development and adoption of cellular therapies: A pilot study. Journal of Tissue Engineering, 2014, 5, 204173141455176.	2.3	19
133	The Biological Activity of AAV Vectors for Choroideremia Gene Therapy Can Be Measured by InÂVitro Prenylation of RAB6A. Molecular Therapy - Methods and Clinical Development, 2018, 9, 288-295.	1.8	19
134	Stem Cell Treatment for Age-Related Macular Degeneration: the Challenges. , 2018, 59, AMD78.		19
135	Gene Therapy for Color Blindness. Yale Journal of Biology and Medicine, 2017, 90, 543-551.	0.2	19
136	<scp>BAX</scp> and <scp>BCL</scp> â€2 polymorphisms, as predictors of proliferative vitreoretinopathy development in patients suffering retinal detachment: the <scp>R</scp> etina 4 project. Acta Ophthalmologica, 2015, 93, e541-9.	0.6	18
137	A splice-site variant in <i>FLVCR1</i> produces retinitis pigmentosa without posterior column ataxia. Ophthalmic Genetics, 2018, 39, 263-267.	0.5	18
138	Transcorneal Electrical Stimulation for the Treatment of Retinitis Pigmentosa: A Multicenter Safety Study of the OkuStim® System (TESOLA-Study). Ophthalmic Research, 2020, 63, 234-243.	1.0	18
139	Repair of Retinal Degeneration following ExÂVivo Minicircle DNA Gene Therapy and Transplantation of Corrected Photoreceptor Progenitors. Molecular Therapy, 2020, 28, 830-844.	3.7	18
140	Mirtron-mediated RNA knockdown/replacement therapy for the treatment of dominant retinitis pigmentosa. Nature Communications, 2021, 12, 4934.	5.8	18
141	Human Retinal Explant Culture for Ex Vivo Validation of AAV Gene Therapy. Methods in Molecular Biology, 2018, 1715, 289-303.	0.4	17
142	A Specific Macula-Predominant Retinal Phenotype Is Associated With the <i>CDHR1</i> Variant c.783G>A, a Silent Mutation Leading to In-Frame Exon Skipping. , 2019, 60, 3388.		17
143	Unilateral pigmentary retinopathy: a retrospective case series. Acta Ophthalmologica, 2019, 97, e601-e617.	0.6	17
144	HYPERREFLECTIVE FOCI AS A PATHOGENETIC BIOMARKER IN CHOROIDEREMIA. Retina, 2020, 40, 1634-1640.	1.0	17

#	Article	IF	CITATIONS
145	Highest reported visual acuity after electronic retinal implantation. Acta Ophthalmologica, 2020, 98, 736-740.	0.6	17
146	Structural Insights into the Unique Activation Mechanisms of a Non-classical Calpain and Its Disease-Causing Variants. Cell Reports, 2020, 30, 881-892.e5.	2.9	17
147	The nanophthalmos protein TMEM98 inhibits MYRF self-cleavage and is required for eye size specification. PLoS Genetics, 2020, 16, e1008583.	1.5	17
148	The Application of CRISPR/Cas9 for the Treatment of Retinal Diseases. Yale Journal of Biology and Medicine, 2017, 90, 533-541.	0.2	17
149	Regulatory Considerations for Gene Therapy Products in the US, EU, and Japan. Yale Journal of Biology and Medicine, 2017, 90, 683-693.	0.2	17
150	Molecular Therapies for Choroideremia. Genes, 2019, 10, 738.	1.0	16
151	The Location of Exon 4 Mutations in RP1 Raises Challenges for Genetic Counseling and Gene Therapy. American Journal of Ophthalmology, 2019, 202, 23-29.	1.7	16
152	Two Novel CAPN5 Variants Associated with Mild and Severe Autosomal Dominant Neovascular Inflammatory Vitreoretinopathy Phenotypes. Ocular Immunology and Inflammation, 2019, 27, 693-698.	1.0	16
153	Next generation sequencing using phenotype-based panels for genetic testing in inherited retinal diseases. Ophthalmic Genetics, 2020, 41, 331-337.	0.5	16
154	Characterizing the cellular immune response to subretinal AAV gene therapy in the murine retina. Molecular Therapy - Methods and Clinical Development, 2021, 22, 52-65.	1.8	16
155	AAV-Mediated Gene Transfer of Human X-Linked Inhibitor of Apoptosis Protects against Oxidative Cell Death in Human RPE Cells. , 2011, 52, 9591.		15
156	Limitations in Clinical Translation of Nanoparticle-Based Gene Therapy. Trends in Biotechnology, 2017, 35, 1124-1125.	4.9	15
157	Filtration of Short-Wavelength Light Provides Therapeutic Benefit in Retinitis Pigmentosa Caused by a Common Rhodopsin Mutation. , 2019, 60, 2733.		15
158	Association of Messenger RNA Level With Phenotype in Patients With Choroideremia. JAMA Ophthalmology, 2020, 138, 128.	1.4	15
159	Longâ€ŧerm followâ€up of chronic central serous chorioretinopathy after successful treatment with photodynamic therapy or micropulse laser. Acta Ophthalmologica, 2021, 99, 805-811.	0.6	15
160	Microperimetry Hill of Vision and Volumetric Measures of Retinal Sensitivity. Translational Vision Science and Technology, 2021, 10, 12.	1.1	15
161	ON-bipolar cell gene expression during retinal degeneration: Implications for optogenetic visual restoration. Experimental Eye Research, 2021, 207, 108553.	1.2	15
162	Scleral punch method with topical mitomycin c for safe revision of failed deep sclerectomy in nanophthalmic uveal effusion syndrome. Graefe's Archive for Clinical and Experimental Ophthalmology, 2009, 247, 999-1001.	1.0	14

Robert E Maclaren

#	Article	IF	CITATIONS
163	Association of Clinical and Genetic Heterogeneity With <i>BEST1</i> Sequence Variations. JAMA Ophthalmology, 2020, 138, 544.	1.4	14
164	Reduced vessel density in deep capillary plexus correlates with retinal layer thickness in choroideremia. British Journal of Ophthalmology, 2021, 105, 687-693.	2.1	14
165	Chimeric human opsins as optogenetic light sensitisers. Journal of Experimental Biology, 2021, 224, .	0.8	14
166	Tropism of AAV Vectors in Photoreceptor-Like Cells of Human iPSC-Derived Retinal Organoids. Translational Vision Science and Technology, 2022, 11, 3.	1.1	14
167	Characterization of a Dominant Cone Degeneration in a Green Fluorescent Protein–Reporter Mouse with Disruption of Loci Associated with Human Dominant Retinal Dystrophy. , 2011, 52, 6617.		13
168	MouseSlc9a8Mutants Exhibit Retinal Defects Due to Retinal Pigmented Epithelium Dysfunction. , 2015, 56, 3015.		13
169	Hypotrichosis and juvenile macular dystrophy caused by CDH3 mutation: A candidate disease for retinal gene therapy. Scientific Reports, 2016, 6, 23674.	1.6	13
170	A quantitative, multi-national and multi-stakeholder assessment of barriers to the adoption of cell therapies. Journal of Tissue Engineering, 2017, 8, 204173141772441.	2.3	13
171	Patient characteristics of untreated chronic central serous chorioretinopathy patients with focal versus diffuse leakage. Graefe's Archive for Clinical and Experimental Ophthalmology, 2019, 257, 1419-1425.	1.0	13
172	Effect of AAV-Mediated Rhodopsin Gene Augmentation on Retinal Degeneration Caused by the Dominant P23H Rhodopsin Mutation in a Knock-In Murine Model. Human Gene Therapy, 2020, 31, 730-742.	1.4	13
173	CRISPR genome engineering for retinal diseases. Progress in Molecular Biology and Translational Science, 2021, 182, 29-79.	0.9	13
174	Real-world refractive outcomes of toric intraocular lens implantation in a United Kingdom National Health Service setting. BMC Ophthalmology, 2018, 18, 30.	0.6	12
175	Progress in the development of novel therapies for choroideremia. Expert Review of Ophthalmology, 2019, 14, 277-285.	0.3	12
176	Macular spatial distribution of preserved autofluorescence in patients with choroideremia. British Journal of Ophthalmology, 2019, 103, 933-937.	2.1	12
177	Inclusion of PF68 Surfactant Improves Stability of rAAV Titer when Passed through a Surgical Device Used in Retinal Gene Therapy. Molecular Therapy - Methods and Clinical Development, 2020, 17, 99-106.	1.8	12
178	<i>RPGR</i> -Related X-Linked Retinitis Pigmentosa Carriers with a Severe "Male Pattern― Ophthalmologica, 2021, 244, 60-67.	1.0	12
179	Testâ€retest repeatability of microperimetry in patients with retinitis pigmentosa caused by mutations in <scp>RPGR</scp> . Clinical and Experimental Ophthalmology, 2020, 48, 714-715.	1.3	12
180	Olfactory Dysfunction in Patients With <i>CNGB1</i> -Associated Retinitis Pigmentosa. JAMA Ophthalmology, 2018, 136, 761.	1.4	11

#	Article	IF	CITATIONS
181	Ocular gene therapy for choroideremia: clinical trials and future perspectives. Expert Review of Ophthalmology, 2018, 13, 129-138.	0.3	11
182	Early Cone Photoreceptor Outer Segment Length Shortening in RPGR X-Linked Retinitis Pigmentosa. Ophthalmologica, 2021, 244, 281-290.	1.0	11
183	Reply to Comment on: Focal and Diffuse Chronic Central Serous Chorioretinopathy Treated With Half-Dose Photodynamic Therapy or Subthreshold Micropulse Laser: PLACE Trial Report No. 3. American Journal of Ophthalmology, 2020, 212, 187-188.	1.7	11
184	Retinal cadherins and the retinal cadherinopathies: Current concepts and future directions. Progress in Retinal and Eye Research, 2022, 90, 101038.	7.3	11
185	Variable phenotypes in patients diagnosed with idiopathic multifocal choroiditis. Clinical and Experimental Ophthalmology, 2006, 34, 233-238.	1.3	10
186	Assessment of AAV Dual Vector Safety in the <i>Abca4^{â^'/â^'}</i> Mouse Model of Stargardt Disease. Translational Vision Science and Technology, 2020, 9, 20.	1.1	10
187	Accurate Quantification of AAV Vector Genomes by Quantitative PCR. Genes, 2021, 12, 601.	1.0	10
188	Re-establishment of visual circuitry after optic nerve regeneration. Eye, 1999, 13, 277-284.	1.1	9
189	Cone Photoreceptor Neuroprotection Conferred by CNTF in a Novel In Vivo Model of Battlefield Retinal Laser Injury. , 2013, 54, 5456.		9
190	Potential lifetime quality of life benefits of choroideremia gene therapy: projections from a clinically informed decision model. Eye, 2019, 33, 1215-1223.	1.1	9
191	Changes in microchip position after implantation of a subretinal vision prosthesis in humans. Acta Ophthalmologica, 2019, 97, e871-e876.	0.6	9
192	AAV2/8 Anti-angiogenic Gene Therapy Using Single-Chain Antibodies Inhibits Murine Choroidal Neovascularization. Molecular Therapy - Methods and Clinical Development, 2019, 13, 86-98.	1.8	9
193	Association of a Novel Intronic Variant in <i>RPGR</i> With Hypomorphic Phenotype of X-Linked Retinitis Pigmentosa. JAMA Ophthalmology, 2020, 138, 1151.	1.4	9
194	Peripapillary Sparing in Autosomal Recessive Bestrophinopathy. Ophthalmology Retina, 2020, 4, 523-529.	1.2	9
195	An analysis of retinal gene therapy clinical trials. Current Opinion in Molecular Therapeutics, 2009, 11, 540-6.	2.8	9
196	A Fragmented Adeno-Associated Viral Dual Vector Strategy for Treatment of Diseases Caused by Mutations in Large Genes Leads to Expression of Hybrid Transcripts. Journal of Genetic Syndromes & Gene Therapy, 2016, 7, .	0.2	8
197	A Novel Method for Quantitative Serial Autofluorescence Analysis in Retinitis Pigmentosa Using Image Characteristics. Translational Vision Science and Technology, 2016, 5, 10.	1.1	8
198	Outcome of Full-Thickness Macular Hole Surgery in Choroideremia. Genes, 2017, 8, 187.	1.0	8

#	Article	IF	CITATIONS
199	A clinical-grade gene therapy vector for pharmacoresistant epilepsy successfully overexpresses NPY in a human neuronal cell line. Seizure: the Journal of the British Epilepsy Association, 2018, 55, 25-29.	0.9	8
200	Clinical Characterization of Retinitis Pigmentosa Associated With Variants in <i>SNRNP200</i> . JAMA Ophthalmology, 2019, 137, 1295.	1.4	8
201	RPGR gene therapy presents challenges in cloning the coding sequence. Expert Opinion on Biological Therapy, 2020, 20, 63-71.	1.4	8
202	Inner retinal thickening affects microperimetry thresholds in the presence of photoreceptor thinning in patients with <i>RPGR</i> retinitis pigmentosa. British Journal of Ophthalmology, 2022, 106, 256-261.	2.1	8
203	Promoter Orientation within an AAV-CRISPR Vector Affects Cas9 Expression and Gene Editing Efficiency. CRISPR Journal, 2020, 3, 276-283.	1.4	8
204	Prevalence and phenotype associations of complement factor I mutations in geographic atrophy. Human Mutation, 2021, 42, 1139-1152.	1.1	8
205	RESPONSE OF CHOROIDAL ABNORMALITIES TO PHOTODYNAMIC THERAPY VERSUS MICROPULSE LASER IN CHRONIC CENTRAL SEROUS CHORIORETINOPATHY. Retina, 2021, 41, 2122-2131.	1.0	8
206	CRISPR Systems Suitable for Single AAV Vector Delivery. Current Gene Therapy, 2021, 22, 1-14.	0.9	8
207	Uveitic Glaucoma and Rosai-Dorfman Disease (Sinus Histiocytosis). Ocular Immunology and Inflammation, 2006, 14, 305-307.	1.0	7
208	Combining M-FISH and Quantum Dot technology for fast chromosomal assignment of transgenic insertions. BMC Biotechnology, 2011, 11, 121.	1.7	7
209	Gene Therapy for Retinal Disease: What Lies Ahead. Ophthalmologica, 2015, 234, 1-5.	1.0	7
210	Cone fusion confusion in photoreceptor transplantation. Stem Cell Investigation, 2017, 4, 71-71.	1.3	7
211	A distinct retinal pigment epithelial cell autofluorescence pattern in choroideremia predicts early involvement of overlying photoreceptors. Acta Ophthalmologica, 2020, 98, e322-e327.	0.6	7
212	Validation of electronic visual acuity (EVA) measurement against standardised ETDRS charts in patients with visual field loss from inherited retinal degenerations. British Journal of Ophthalmology, 2020, 104, 924-931.	2.1	7
213	Low-contrast visual acuity versus low-luminance visual acuity in choroideremia. Australasian journal of optometry, The, 2021, 104, 90-94.	0.6	7
214	Low Luminance Visual Acuity and Low Luminance Deficit in Choroideremia and <i>RPGR</i> -Associated Retinitis Pigmentosa. Translational Vision Science and Technology, 2021, 10, 28.	1.1	7
215	EFFICACY OF HALF-DOSE PHOTODYNAMIC THERAPY VERSUS HIGH-DENSITY SUBTHRESHOLD MICROPULSE LASER FOR TREATING PIGMENT EPITHELIAL DETACHMENTS IN CHRONIC CENTRAL SEROUS CHORIORETINOPATHY. Retina, 2022, 42, 721-729.	1.0	7
216	Stickler Syndrome. Ophthalmology, 2008, 115, 1636-1637.	2.5	6

#	Article	IF	CITATIONS
217	Reply: Cataract surgery and microphthalmic eyes. Journal of Cataract and Refractive Surgery, 2013, 39, 818-819.	0.7	6
218	Benefits of gene therapy for both eyes. Lancet, The, 2016, 388, 635-636.	6.3	6
219	Vector Shedding and Immunogenicity Sampling for Retinal Gene Therapy. Methods in Molecular Biology, 2018, 1715, 359-371.	0.4	6
220	"Genetic and clinical findings in an ethnically diverse retinitis pigmentosa cohort associated with pathogenic variants in EYS― Eye, 2021, 35, 1440-1449.	1.1	6
221	Outcome of half-dose photodynamic therapy in chronic central serous chorioretinopathy with fovea-involving atrophy. Graefe's Archive for Clinical and Experimental Ophthalmology, 2021, 259, 905-910.	1.0	6
222	Adeno-Associated Viral Gene Therapy for Retinal Disorders. Neuromethods, 2015, , 203-228.	0.2	6
223	Structural and Functional Characteristics of Color Vision Changes in Choroideremia. Frontiers in Neuroscience, 2021, 15, 729807.	1.4	6
224	Focus on Molecules: Neural retina leucine zipper (NRL). Experimental Eye Research, 2012, 104, 99-100.	1.2	5
225	A Novel Achromatopsia Mouse Model Resulting From a Naturally Occurring Missense Change in Cngb3. , 2018, 59, 6102.		5
226	Electrophysiological verification of enhanced S-cone syndrome caused by a novel c.755T>C <i>NR2E3</i> missense variant. Ophthalmic Genetics, 2019, 40, 29-33.	0.5	5
227	A detailed inÂvivo analysis of the retinal nerve fibre layer in choroideremia. Acta Ophthalmologica, 2019, 97, e589-e600.	0.6	5
228	The Impact of Progressive Visual Field Constriction on Reading Ability in an Inherited Retinal Degeneration. Ophthalmologica, 2020, 243, 207-216.	1.0	5
229	A low-cost telescope for enhanced stimulus visual field coverage in functional MRI. Journal of Neuroscience Methods, 2021, 350, 109023.	1.3	5
230	Clinical applications of microperimetry in <i>RPGR</i> â€related retinitis pigmentosa: a review. Acta Ophthalmologica, 2021, 99, 819-825.	0.6	5
231	North Carolina macular dystrophy shows a particular drusen phenotype and atrophy progression. British Journal of Ophthalmology, 2022, 106, 1269-1273.	2.1	5
232	A glial palisade delineates the ipsilateral optic projection in Monodelphis. Visual Neuroscience, 1998, 15, 397-400.	0.5	4
233	Tetradecanoylphorbol-13-acetate (TPA) significantly increases AAV2/5 transduction of human neuronal cells inÂvitro. Experimental Eye Research, 2012, 97, 148-153.	1.2	4
234	Gene therapy for age-related macular degeneration. Lancet, The, 2015, 386, 2369-2370.	6.3	4

#	Article	IF	CITATIONS
235	Emerging In Vitro 3D Tumour Models in Nanoparticle-Based Gene and Drug Therapy. Trends in Biotechnology, 2018, 36, 477-480.	4.9	4
236	Presence of corneal crystals confirms an unusual presentation of Bietti's retinal dystrophy. Ophthalmic Genetics, 2019, 40, 461-465.	0.5	4
237	A Quantitative Chloride Channel Conductance Assay for Efficacy Testing of AAV.BEST1. Human Gene Therapy Methods, 2019, 30, 44-52.	2.1	4
238	A novel splice-site variant in <i>CDH23</i> in a patient with Usher syndrome type 1. Ophthalmic Genetics, 2019, 40, 545-548.	0.5	4
239	CDHR1-related late-onset macular dystrophy: further insights. Eye, 2021, 35, 2901-2902.	1.1	4
240	Genetic and Clinical Findings in an Ethnically Diverse Cohort with Retinitis Pigmentosa Associated with Pathogenic Variants in CERKL. Genes, 2020, 11, 1497.	1.0	4
241	Is subretinal AAV gene replacement still the only viable treatment option for choroideremia?. Expert Opinion on Orphan Drugs, 2021, 9, 13-24.	0.5	4
242	Deep phenotyping of the Cdhr1 mouse validates its use in pre-clinical studies for human CDHR1-associated retinal degeneration. Experimental Eye Research, 2021, 208, 108603.	1.2	4
243	Expression of Rab Prenylation Pathway Genes and Relation to Disease Progression in Choroideremia. Translational Vision Science and Technology, 2021, 10, 12.	1.1	4
244	In Silico Analysis of Pathogenic CRB1 Single Nucleotide Variants and Their Amenability to Base Editing as a Potential Lead for Therapeutic Intervention. Genes, 2021, 12, 1908.	1.0	4
245	The Scope of Pathogenic ABCA4 Mutations Targetable by CRISPR DNA Base Editing Systems—A Systematic Review. Frontiers in Genetics, 2021, 12, 814131.	1.1	4
246	A novel mutation in the dominantly inherited TOPORS gene supports haploinsufficiency as the mechanism of retinitis pigmentosa. Ophthalmic Genetics, 2017, 38, 562-566.	0.5	3
247	Optical Coherence Tomography in Patients With the Subretinal Implant Retina Implant Alpha IMS. Ophthalmic Surgery Lasers and Imaging Retina, 2017, 48, 993-999.	0.4	3
248	A Randomized Crossover Study to Assess the Usability of Two New Vision Tests in Patients with Low Vision. Optometry and Vision Science, 2019, 96, 443-452.	0.6	3
249	Dynamic in vivo quantification of rod photoreceptor degeneration using fluorescent reporter mouse models of retinitis pigmentosa. Experimental Eye Research, 2020, 190, 107895.	1.2	3
250	Analysis of Early Cone Dysfunction in an In Vivo Model of Rod-Cone Dystrophy. International Journal of Molecular Sciences, 2020, 21, 6055.	1.8	3
251	Correcting visual loss by genetics and prosthetics. Current Opinion in Physiology, 2020, 16, 1-7.	0.9	3
252	Longitudinal Study to Assess the Quantitative Use of Fundus Autofluorescence for Monitoring Disease Progression in Choroideremia. Journal of Clinical Medicine, 2021, 10, 232.	1.0	3

#	Article	IF	CITATIONS
253	The Effect of Cataract on Color Vision Measurement with the Low-Vision Cambridge Colour Test. Ophthalmology Science, 2022, 2, 100153.	1.0	3
254	Submacular Surgery: Author Reply. Ophthalmology, 2006, 113, 1471-1472.	2.5	2
255	Arterial occlusion after scleral buckling. British Journal of Ophthalmology, 2010, 94, 503-503.	2.1	2
256	Atypical choroideremia presenting with earlyâ€onset macular atrophy. Acta Ophthalmologica, 2019, 97, 633-636.	0.6	2
257	Novel non-sense mutation in RP2 (c.843_844insT/p.Arg282fs) is associated with a severe phenotype of retinitis pigmentosa without evidence of primary retinal pigment epithelium involvement. BMJ Case Reports, 2019, 12, e224451.	0.2	2
258	Chronic untreated retinal detachment in a patient with choroideremia provides insight into the disease process and potential therapy. European Journal of Ophthalmology, 2022, 32, NP30-NP33.	0.7	2
259	Expression of myelin proteins in the opossum optic nerve: Late appearance of inhibitors implicates an earlier non-myelin factor in preventing ganglion cell regeneration. , 1996, 372, 27.		2
260	Characterizing Visual Fields in <i>RPGR</i> Related Retinitis Pigmentosa Using Octopus Static-Automated Perimetry. Translational Vision Science and Technology, 2022, 11, 15.	1.1	2
261	Rapid Quantification of the Binocular Visual Field for Clinical Trials: Performance of a Modified Esterman Supra-Threshold Test Implemented with the Open Perimetry Interface. Clinical Ophthalmology, 0, Volume 16, 1513-1523.	0.9	2
262	Combined phacoemulsification and removal of gas following macular hole surgery. Journal of Cataract and Refractive Surgery, 2011, 37, 229-234.	0.7	1
263	Retinal Pigment Epithelium and Choroid Translocation in Patients with Age-Related Macular Degeneration. , 2013, , 2010-2018.		1
264	Unsutured phakic implantation of a black intraocular lens in the sulcus to treat leukocoria. Journal of Cataract and Refractive Surgery, 2014, 40, 1565-1567.	0.7	1
265	Retinal Gene Therapy for Choroideremia: In Vitro Testing for Gene Augmentation Using an Adeno-Associated Viral (AAV) Vector. Methods in Molecular Biology, 2018, 1715, 89-97.	0.4	1
266	Comment on: â€~Sector retinitis pigmentosa caused by mutations of the RHO gene'. Eye, 2020, 34, 1477-14	78 . .1	1
267	Binocular Visual Function in a Pre-Presbyopic Patient with Uniocular Cataract Undergoing Cataract Surgery with a Multifocal Intraocular Lens. Clinical Ophthalmology, 2020, Volume 14, 2001-2009.	0.9	1
268	A 2020 vision of ocular gene therapy. Gene Therapy, 2021, 28, 217-219.	2.3	1
269	An analysis of the Kozak consensus in retinal genes and its relevance to gene therapy. Molecular Vision, 2021, 27, 233-242.	1.1	1
270	Outer retinal and choriocapillaris modifications in choroideremia: three differentially impaired retinal regions and the potential diagnostic role of the external limiting membrane. Eye, 2022, , .	1.1	1

#	Article	IF	CITATIONS
271	Assessment of 180° Rotation of the Choroid as a Novel Surgical Treatment for Age-Related Macular Degeneration. , 2012, 53, 2523.		0
272	Gene Therapy for Retinal Disease. , 2015, , 173-189.		0
273	Using Rho Kinase Inhibitors for Retinal Detachment—Reply. JAMA Ophthalmology, 2017, 135, 895.	1.4	0
274	Reply. Ophthalmology, 2019, 126, e30-e31.	2.5	0
275	Re: Song <i>et al.</i> , Toxicology and Pharmacology of an AAV Vector Expressing Codon-Optimized RPGR in RPGR-Deficient Rd9 Mice. Hum Gene Ther Clin Dev 2018; 29(4):188–197. Human Gene Therapy Clinical Development, 2019, 30, 40-40.	3.2	0
276	Reply. Ophthalmology, 2019, 126, e11.	2.5	0
277	A Semiautomated, Phenotypic, In Vitro Scratch Assay for Assessing Retinal Pigment Epithelial Cell Wound Healing. Journal of Ocular Pharmacology and Therapeutics, 2020, 36, 257-266.	0.6	0
278	Choroideremia and Other Hereditary Conditions Manifesting with Choroidal Atrophy. , 2021, , 1-16.		0
279	Reply to Comment on: Crossover to Photodynamic Therapy or Micropulse Laser After Failure of Primary Treatment of Chronic Central Serous Chorioretinopathy. American Journal of Ophthalmology, 2021, 222, 397-398.	1.7	0
280	Endpoints for Measuring Efficacy in Clinical Trials for Inherited Retinal Disease. International Ophthalmology Clinics, 2021, 61, 63-78.	0.3	0
281	Gene Therapy for Choroideremia. Essentials in Ophthalmology, 2015, , 27-41.	0.0	0
282	Digital Technology in Somatic and Gene Therapy Trials of Pediatric Patients With Ocular Diseases: Protocol for a Scoping Review. JMIR Research Protocols, 2019, 8, e10705.	0.5	0
283	Gene therapy and treatment trials. , 2022, , 63-66.		Ο
284	Title is missing!. , 2020, 16, e1008583.		0
285	Title is missing!. , 2020, 16, e1008583.		Ο
286	Title is missing!. , 2020, 16, e1008583.		0
287	Title is missing!. , 2020, 16, e1008583.		0
288	Choroideremia and Other Hereditary Conditions Manifesting with Choroidal Atrophy. , 2022, , 3997-4012.		0