David H Wasserman

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3877612/publications.pdf

Version: 2024-02-01

185 papers 13,183 citations

²⁶⁶³⁰
56
h-index

24982 109 g-index

217 all docs

217 docs citations

times ranked

217

18523 citing authors

#	Article	IF	CITATIONS
1	Mitochondrial H2O2 emission and cellular redox state link excess fat intake to insulin resistance in both rodents and humans. Journal of Clinical Investigation, 2009, 119, 573-581.	8.2	1,051
2	Physical Activity/Exercise and Type 2 Diabetes. Diabetes Care, 2006, 29, 1433-1438.	8.6	800
3	The liver. Current Biology, 2017, 27, R1147-R1151.	3.9	708
4	Physical Activity/Exercise and Type 2 Diabetes. Diabetes Care, 2004, 27, 2518-2539.	8.6	617
5	Standard operating procedures for describing and performing metabolic tests of glucose homeostasis in mice. DMM Disease Models and Mechanisms, 2010, 3, 525-534.	2.4	606
6	Circadian Disruption Leads to Insulin Resistance and Obesity. Current Biology, 2013, 23, 372-381.	3.9	364
7	Considerations in the Design of Hyperinsulinemic-Euglycemic Clamps in the Conscious Mouse. Diabetes, 2006, 55, 390-397.	0.6	345
8	Four grams of glucose. American Journal of Physiology - Endocrinology and Metabolism, 2009, 296, E11-E21.	3.5	291
9	Fibroblast Growth Factor 21 Controls Glycemia via Regulation of Hepatic Glucose Flux and Insulin Sensitivity. Endocrinology, 2009, 150, 4084-4093.	2.8	254
10	Glucose Metabolism In Vivo in Four Commonly Used Inbred Mouse Strains. Diabetes, 2008, 57, 1790-1799.	0.6	225
10	Glucose Metabolism In Vivo in Four Commonly Used Inbred Mouse Strains. Diabetes, 2008, 57, 1790-1799. Metformin reduces liver glucose production by inhibition of fructose-1-6-bisphosphatase. Nature Medicine, 2018, 24, 1395-1406.	30.7	225
	Metformin reduces liver glucose production by inhibition of fructose-1-6-bisphosphatase. Nature		
11	Metformin reduces liver glucose production by inhibition of fructose-1-6-bisphosphatase. Nature Medicine, 2018, 24, 1395-1406. Chronic Treatment With Sildenafil Improves Energy Balance and Insulin Action in High Fat-Fed	30.7	212
11 12	Metformin reduces liver glucose production by inhibition of fructose-1-6-bisphosphatase. Nature Medicine, 2018, 24, 1395-1406. Chronic Treatment With Sildenafil Improves Energy Balance and Insulin Action in High Fat-Fed Conscious Mice. Diabetes, 2007, 56, 1025-1033. FGF19 action in the brain induces insulin-independent glucose lowering. Journal of Clinical	30.7	212
11 12 13	Metformin reduces liver glucose production by inhibition of fructose-1-6-bisphosphatase. Nature Medicine, 2018, 24, 1395-1406. Chronic Treatment With Sildenafil Improves Energy Balance and Insulin Action in High Fat-Fed Conscious Mice. Diabetes, 2007, 56, 1025-1033. FGF19 action in the brain induces insulin-independent glucose lowering. Journal of Clinical Investigation, 2013, 123, 4799-4808. VEGFB/VEGFR1-Induced Expansion of Adipose Vasculature Counteracts Obesity and Related Metabolic	30.7 0.6 8.2	212 208 183
11 12 13	Metformin reduces liver glucose production by inhibition of fructose-1-6-bisphosphatase. Nature Medicine, 2018, 24, 1395-1406. Chronic Treatment With Sildenafil Improves Energy Balance and Insulin Action in High Fat-Fed Conscious Mice. Diabetes, 2007, 56, 1025-1033. FGF19 action in the brain induces insulin-independent glucose lowering. Journal of Clinical Investigation, 2013, 123, 4799-4808. VEGFB/VEGFR1-Induced Expansion of Adipose Vasculature Counteracts Obesity and Related Metabolic Complications. Cell Metabolism, 2016, 23, 712-724.	30.7 0.6 8.2 16.2	212 208 183 180
11 12 13 14	Metformin reduces liver glucose production by inhibition of fructose-1-6-bisphosphatase. Nature Medicine, 2018, 24, 1395-1406. Chronic Treatment With Sildenafil Improves Energy Balance and Insulin Action in High Fat-Fed Conscious Mice. Diabetes, 2007, 56, 1025-1033. FGF19 action in the brain induces insulin-independent glucose lowering. Journal of Clinical Investigation, 2013, 123, 4799-4808. VEGFB/VEGFR1-Induced Expansion of Adipose Vasculature Counteracts Obesity and Related Metabolic Complications. Cell Metabolism, 2016, 23, 712-724. FoxO1 integrates direct and indirect effects of insulin on hepatic glucose production and glucose utilization. Nature Communications, 2015, 6, 7079. NIH experiment in centralized mouse phenotyping: the Vanderbilt experience and recommendations for evaluating glucose homeostasis in the mouse. American Journal of Physiology - Endocrinology and	30.7 0.6 8.2 16.2	212 208 183 180

#	Article	IF	Citations
19	Bile diversion to the distal small intestine has comparable metabolic benefits to bariatric surgery. Nature Communications, 2015, 6, 7715.	12.8	156
20	Toll-like Receptor 4 Deficiency Promotes the Alternative Activation of Adipose Tissue Macrophages. Diabetes, 2012, 61, 2718-2727.	0.6	148
21	Mice with AS160/TBC1D4-Thr649Ala Knockin Mutation Are Glucose Intolerant with Reduced Insulin Sensitivity and Altered GLUT4 Trafficking. Cell Metabolism, 2011, 13, 68-79.	16.2	147
22	Diet-Induced Muscle Insulin Resistance Is Associated With Extracellular Matrix Remodeling and Interaction With Integrin $\hat{l}\pm2\hat{l}^21$ in Mice. Diabetes, 2011, 60, 416-426.	0.6	132
23	The physiological regulation of glucose flux into muscle <i>in vivo</i> . Journal of Experimental Biology, 2011, 214, 254-262.	1.7	128
24	Exercise and the Regulation of Hepatic Metabolism. Progress in Molecular Biology and Translational Science, 2015, 135, 203-225.	1.7	127
25	Effects of Gender on Neuroendocrine and Metabolic Counterregulatory Responses to Exercise in Normal Man ¹ . Journal of Clinical Endocrinology and Metabolism, 2000, 85, 224-230.	3.6	126
26	Skeletal Muscle AMP-activated Protein Kinase Is Essential for the Metabolic Response to Exercise in Vivo. Journal of Biological Chemistry, 2009, 284, 23925-23934.	3.4	124
27	SIRT3 Is Crucial for Maintaining Skeletal Muscle Insulin Action and Protects Against Severe Insulin Resistance in High-Fat–Fed Mice. Diabetes, 2015, 64, 3081-3092.	0.6	119
28	Central injection of fibroblast growth factor 1 induces sustained remission of diabetic hyperglycemia in rodents. Nature Medicine, 2016, 22, 800-806.	30.7	119
29	Circadian Clock Gene Bmal1 Is Not Essential; Functional Replacement with its Paralog, Bmal2. Current Biology, 2010, 20, 316-321.	3.9	116
30	Microvascular Disease, Peripheral Artery Disease, and Amputation. Circulation, 2019, 140, 449-458.	1.6	114
31	Metabolomic profiling of dietaryâ€induced insulin resistance in the high fat–fed C57BL/6J mouse. Diabetes, Obesity and Metabolism, 2008, 10, 950-958.	4.4	111
32	Amino acids as metabolic substrates during cardiac ischemia. Experimental Biology and Medicine, 2012, 237, 1369-1378.	2.4	107
33	Hyaluronan Accumulates With High-Fat Feeding and Contributes to Insulin Resistance. Diabetes, 2013, 62, 1888-1896.	0.6	100
34	The Glucagon-Like Peptide-1 Receptor Regulates Endogenous Glucose Production and Muscle Glucose Uptake Independent of Its Incretin Action. Endocrinology, 2009, 150, 1155-1164.	2.8	99
35	Hyperinsulinemic-euglycemic Clamps in Conscious, Unrestrained Mice. Journal of Visualized Experiments, 2011, , .	0.3	94
36	Overproduction of Angiotensinogen from Adipose Tissue Induces Adipose Inflammation, Glucose Intolerance, and Insulin Resistance. Obesity, 2012, 20, 48-56.	3.0	94

#	Article	IF	CITATIONS
37	Regulation of Glucose Fluxes During Exercise in the Postabsorptive State. Annual Review of Physiology, 1995, 57, 191-218.	13.1	91
38	The Vasculature in Prediabetes. Circulation Research, 2018, 122, 1135-1150.	4.5	91
39	Hepatic energy state is regulated by glucagon receptor signaling in mice. Journal of Clinical Investigation, 2009, 119, 2412-2422.	8.2	91
40	Glucagon and lipid interactions in the regulation of hepatic AMPK signaling and expression of PPARα and FGF21 transcripts in vivo. American Journal of Physiology - Endocrinology and Metabolism, 2010, 299, E607-E614.	3.5	90
41	Individual Mice Can Be Distinguished by the Period of Their Islet Calcium Oscillations. Diabetes, 2005, 54, 3517-3522.	0.6	89
42	Aldosterone decreases glucose-stimulated insulin secretion in vivo in mice and in murine islets. Diabetologia, 2011, 54, 2152-2163.	6.3	88
43	Muscle-Specific Vascular Endothelial Growth Factor Deletion Induces Muscle Capillary Rarefaction Creating Muscle Insulin Resistance. Diabetes, 2013, 62, 572-580.	0.6	82
44	Impact of macrophage toll-like receptor 4 deficiency on macrophage infiltration into adipose tissue and the artery wall in mice. Diabetologia, 2009, 52, 318-328.	6.3	81
45	Overexpression of hexokinase II increases insulinand exercise-stimulated muscle glucose uptake in vivo. American Journal of Physiology - Endocrinology and Metabolism, 1999, 276, E70-E77.	3.5	80
46	Glucose-6-Phosphate–Mediated Activation of Liver Glycogen Synthase Plays a Key Role in Hepatic Glycogen Synthesis. Diabetes, 2013, 62, 4070-4082.	0.6	78
47	Mass spectrometry-based microassay of ^{2 < /sup>H and ^{13 < /sup>C plasma glucose labeling to quantify liver metabolic fluxes in vivo. American Journal of Physiology - Endocrinology and Metabolism, 2015, 309, E191-E203.}}	3.5	75
48	AS160 deficiency causes whole-body insulin resistance via composite effects in multiple tissues. Biochemical Journal, 2013, 449, 479-489.	3.7	71
49	Emerging role of AMP-activated protein kinase in endocrine control of metabolism in the liver. Molecular and Cellular Endocrinology, 2013, 366, 152-162.	3.2	71
50	Hexokinase II Overexpression Improves Exercise-Stimulated But Not Insulin-Stimulated Muscle Glucose Uptake in High-Fat-Fed C57BL/6J Mice. Diabetes, 2004, 53, 306-314.	0.6	70
51	Glucoregulation during and after exercise in health and insulin-dependent diabetes. Exercise and Sport Sciences Reviews, 2005, 33, 17-23.	3.0	69
52	Insulin secretion in the conscious mouse is biphasic and pulsatile. American Journal of Physiology - Endocrinology and Metabolism, 2006, 290, E523-E529.	3.5	67
53	Glucagon-Like Peptide-1 Receptor Knockout Mice Are Protected from High-Fat Diet-Induced Insulin Resistance. Endocrinology, 2010, 151, 4678-4687.	2.8	67
54	Endothelial nitric oxide synthase is central to skeletal muscle metabolic regulation and enzymatic signaling during exercise in vivo. American Journal of Physiology - Regulatory Integrative and Comparative Physiology, 2010, 298, R1399-R1408.	1.8	64

#	Article	IF	CITATIONS
55	Markers of glycemic control in the mouse: comparisons of 6-h- and overnight-fasted blood glucoses to Hb A _{1c} . American Journal of Physiology - Endocrinology and Metabolism, 2008, 295, E981-E986.	3.5	63
56	5-Aminoimidazole-4-carboxamide-1-β-d-ribofuranoside (AICAR) Effect on Glucose Production, but Not Energy Metabolism, Is Independent of Hepatic AMPK in Vivo. Journal of Biological Chemistry, 2014, 289, 5950-5959.	3.4	60
57	Energy state of the liver during short-term and exhaustive exercise in C57BL/6J mice. American Journal of Physiology - Endocrinology and Metabolism, 2006, 290, E405-E408.	3.5	58
58	Hexokinase II partial knockout impairs exercise-stimulated glucose uptake in oxidative muscles of mice. American Journal of Physiology - Endocrinology and Metabolism, 2003, 285, E958-E963.	3 . 5	57
59	Distributed control of glucose uptake by working muscles of conscious mice: roles of transport and phosphorylation. American Journal of Physiology - Endocrinology and Metabolism, 2004, 286, E77-E84.	3.5	55
60	Control of Exercise-stimulated Muscle Glucose Uptake by GLUT4 Is Dependent on Glucose Phosphorylation Capacity in the Conscious Mouse. Journal of Biological Chemistry, 2004, 279, 50956-50961.	3.4	55
61	Control of muscle glucose uptake: test of the rate-limiting step paradigm in conscious, unrestrained mice. Journal of Physiology, 2005, 562, 925-935.	2.9	54
62	Glucose kinetics and exercise tolerance in mice lacking the GLUT4 glucose transporter. Journal of Physiology, 2007, 582, 801-812.	2.9	53
63	Assessment of Different Bariatric Surgeries in the Treatment of Obesity and Insulin Resistance in Mice. Annals of Surgery, 2011, 254, 73-82.	4.2	53
64	Relaxin Treatment Reverses Insulin Resistance in Mice Fed a High-Fat Diet. Diabetes, 2013, 62, 3251-3260.	0.6	52
65	Contrasting effects of exercise and NOS inhibition on tissue-specific fatty acid and glucose uptake in mice. American Journal of Physiology - Endocrinology and Metabolism, 2002, 283, E116-E123.	3.5	51
66	Limitations to basal and insulin-stimulated skeletal muscle glucose uptake in the high-fat-fed rat. American Journal of Physiology - Endocrinology and Metabolism, 2000, 279, E1064-E1071.	3.5	49
67	Hexokinase II protein content is a determinant of exercise endurance capacity in the mouse. Journal of Physiology, 2005, 566, 533-541.	2.9	49
68	Hepatocyte estrogen receptor alpha mediates estrogen action to promote reverse cholesterol transport during Western-type diet feeding. Molecular Metabolism, 2018, 8, 106-116.	6. 5	49
69	Limitations to exercise- and maximal insulin-stimulated muscle glucose uptake. Journal of Applied Physiology, 1998, 85, 2305-2313.	2.5	48
70	Phosphorylation Barriers to Skeletal and Cardiac Muscle Glucose Uptakes in High-Fat Fed Mice: Studies in Mice With a 50% Reduction of Hexokinase II. Diabetes, 2007, 56, 2476-2484.	0.6	47
71	Interaction of gut and liver in nitrogen metabolism during exercise. Metabolism: Clinical and Experimental, 1991, 40, 307-314.	3.4	46
72	Heterozygous SOD2 Deletion Impairs Glucose-Stimulated Insulin Secretion, but Not Insulin Action, in High-Fat–Fed Mice. Diabetes, 2014, 63, 3699-3710.	0.6	46

#	Article	IF	CITATIONS
73	Loss of hepatic AMP-activated protein kinase impedes the rate of glycogenolysis but not gluconeogenic fluxes in exercising mice. Journal of Biological Chemistry, 2017, 292, 20125-20140.	3.4	46
74	Role of TAPP1 and TAPP2 adaptor binding to PtdIns(3,4) <i>P</i> 2 in regulating insulin sensitivity defined by knock-in analysis. Biochemical Journal, 2011, 434, 265-274.	3.7	45
75	Role of carotid bodies in control of the neuroendocrine response to exercise. American Journal of Physiology - Endocrinology and Metabolism, 2001, 281, E742-E748.	3.5	44
76	Functional limitations to glucose uptake in muscles comprised of different fiber types. American Journal of Physiology - Endocrinology and Metabolism, 2001, 280, E994-E999.	3.5	41
77	AMP Kinase-Induced Skeletal Muscle Glucose But Not Long-Chain Fatty Acid Uptake Is Dependent on Nitric Oxide. Diabetes, 2004, 53, 1429-1435.	0.6	41
78	Effects of chronic coffee consumption on glucose kinetics in the conscious rat. Canadian Journal of Physiology and Pharmacology, 2007, 85, 823-830.	1.4	41
79	Disruption of Acetyl-Lysine Turnover in Muscle Mitochondria Promotes Insulin Resistance and Redox Stress without Overt Respiratory Dysfunction. Cell Metabolism, 2020, 31, 131-147.e11.	16.2	41
80	INTERACTION OF PHYSIOLOGICAL MECHANISMS IN CONTROL OF MUSCLE GLUCOSE UPTAKE. Clinical and Experimental Pharmacology and Physiology, 2005, 32, 319-323.	1.9	39
81	SIRT2 knockout exacerbates insulin resistance in high fat-fed mice. PLoS ONE, 2018, 13, e0208634.	2.5	39
82	Hyperoxia Synergizes with Mutant Bone Morphogenic Protein Receptor 2 to Cause Metabolic Stress, Oxidant Injury, and Pulmonary Hypertension. American Journal of Respiratory Cell and Molecular Biology, 2013, 49, 778-787.	2.9	38
83	Approach to assessing determinants of glucose homeostasis in the conscious mouse. Mammalian Genome, 2014, 25, 522-538.	2.2	38
84	Integrin $\hat{l}\pm 1$ -null Mice Exhibit Improved Fatty Liver When Fed a High Fat Diet Despite Severe Hepatic Insulin Resistance. Journal of Biological Chemistry, 2015, 290, 6546-6557.	3.4	38
85	An Overview of Muscle Glucose Uptake during Exercise. Advances in Experimental Medicine and Biology, 1998, 441, 1-16.	1.6	38
86	Hepatic Glucagon Action Is Essential for Exercise-Induced Reversal of Mouse Fatty Liver. Diabetes, 2011, 60, 2720-2729.	0.6	37
87	Glycine N-methyltransferase deletion in mice diverts carbon flux from gluconeogenesis to pathways that utilize excess methionine cycle intermediates. Journal of Biological Chemistry, 2018, 293, 11944-11954.	3.4	37
88	Matrix metalloproteinase 9 opposes diet-induced muscle insulin resistance in mice. Diabetologia, 2014, 57, 603-613.	6.3	36
89	Sympathetic drive to liver and nonhepatic splanchnic tissue during heavy exercise. Journal of Applied Physiology, 1997, 82, 1244-1249.	2.5	35
90	Obesity impairs skeletal muscle AMPK signaling during exercise: role of AMPK $\hat{l}\pm 2$ in the regulation of exercise capacity in vivo. International Journal of Obesity, 2011, 35, 982-989.	3.4	35

#	Article	IF	CITATIONS
91	Integrin-Linked Kinase Is Necessary for the Development of Diet-Induced Hepatic Insulin Resistance. Diabetes, 2017, 66, 325-334.	0.6	35
92	Cytochrome P450 epoxygenase-derived epoxyeicosatrienoic acids contribute to insulin sensitivity in mice and in humans. Diabetologia, 2017, 60, 1066-1075.	6.3	35
93	Insulin exits skeletal muscle capillaries by fluid-phase transport. Journal of Clinical Investigation, 2018, 128, 699-714.	8.2	35
94	5-Aminoimidazole-4-Carboxamide-1-Â-D-Ribofuranoside Causes Acute Hepatic Insulin Resistance In Vivo. Diabetes, 2005, 54, 355-360.	0.6	34
95	Fiber type-specific determinants of V maxfor insulin-stimulated muscle glucose uptake in vivo. American Journal of Physiology - Endocrinology and Metabolism, 2003, 284, E541-E548.	3.5	32
96	Portal Venous 5-Aminoimidazole-4-Carboxamide-1-Â-D-Ribofuranoside Infusion Overcomes Hyperinsulinemic Suppression of Endogenous Glucose Output. Diabetes, 2005, 54, 373-382.	0.6	32
97	Integrin-Linked Kinase in Muscle Is Necessary for the Development of Insulin Resistance in Diet-Induced Obese Mice. Diabetes, 2016, 65, 1590-1600.	0.6	32
98	Regulation of Insulin-Stimulated Muscle Glucose Uptake in the Conscious Mouse: Role of Glucose Transport Is Dependent on Glucose Phosphorylation Capacity. Endocrinology, 2004, 145, 4912-4916.	2.8	31
99	Insulin Action in the Double Incretin Receptor Knockout Mouse. Diabetes, 2008, 57, 288-297.	0.6	31
100	Chronic Angiotensin-(1–7) Improves Insulin Sensitivity in High-Fat Fed Mice Independent of Blood Pressure. Hypertension, 2016, 67, 983-991.	2.7	30
101	Interaction of Insulin and Prior Exercise in Control of Hepatic Metabolism of a Glucose Load. Diabetes, 2003, 52, 1897-1903.	0.6	28
102	Zonation of acetate labeling across the liver: implications for studies of lipogenesis by MIDA. American Journal of Physiology - Endocrinology and Metabolism, 1999, 277, E1022-E1027.	3.5	27
103	Prior exercise increases net hepatic glucose uptake during a glucose load. American Journal of Physiology - Endocrinology and Metabolism, 1999, 276, E1022-E1029.	3.5	26
104	Disassociation of Muscle Insulin Signaling and Insulin-Stimulated Glucose Uptake during Endotoxemia. PLoS ONE, 2012, 7, e30160.	2.5	26
105	A negative arterial-portal venous glucose gradient increases net hepatic glucose uptake in euglycemic dogs. American Journal of Physiology - Endocrinology and Metabolism, 1999, 277, E126-E134.	3.5	23
106	Role of hepatic \hat{l}_{\pm} - and \hat{l}^2 -adrenergic receptor stimulation on hepatic glucose production during heavy exercise. American Journal of Physiology - Endocrinology and Metabolism, 1997, 273, E831-E838.	3.5	22
107	Analysis of insulin-stimulated skeletal muscle glucose uptake in conscious rat using isotopic glucose analogs. American Journal of Physiology - Endocrinology and Metabolism, 1998, 274, E287-E296.	3.5	22
108	CD44 contributes to hyaluronan-mediated insulin resistance in skeletal muscle of high-fat-fed C57BL/6 mice. American Journal of Physiology - Endocrinology and Metabolism, 2019, 317, E973-E983.	3.5	22

#	Article	IF	CITATIONS
109	Physiological Bases for the Treatment of the Physically Active Individual with Diabetes. Sports Medicine, 1989, 7, 376-392.	6.5	21
110	Effect of fast duration on disposition of an intraduodenal glucose load in the conscious dog. American Journal of Physiology - Endocrinology and Metabolism, 1999, 276, E543-E552.	3.5	21
111	CETP Inhibition Improves HDL Function but Leads to Fatty Liver and Insulin Resistance in CETP-Expressing Transgenic Mice on a High-Fat Diet. Diabetes, 2018, 67, 2494-2506.	0.6	20
112	Enhanced Mitochondrial Superoxide Scavenging Does Not Improve Muscle Insulin Action in the High Fat-Fed Mouse. PLoS ONE, 2015, 10, e0126732.	2.5	20
113	Liver AMP-Activated Protein Kinase Is Unnecessary for Gluconeogenesis but Protects Energy State during Nutrient Deprivation. PLoS ONE, 2017, 12, e0170382.	2.5	20
114	Glucagon response to exercise is critical for accelerated hepatic glutamine metabolism and nitrogen disposal. American Journal of Physiology - Endocrinology and Metabolism, 2000, 279, E638-E645.	3.5	19
115	Prior exercise and the response to insulin-induced hypoglycemia in the dog. American Journal of Physiology - Endocrinology and Metabolism, 2002, 282, E1128-E1138.	3.5	19
116	Prior exercise enhances passive absorption of intraduodenal glucose. Journal of Applied Physiology, 2003, 95, 1132-1138.	2.5	18
117	AMP-activated protein kinase (AMPK) $\hat{l}\pm2$ plays a role in determining the cellular fate of glucose in insulin-resistant mouse skeletal muscle. Diabetologia, 2013, 56, 608-617.	6.3	18
118	Striatal Dopamine Homeostasis is Altered in Mice Following Roux-en-Y Gastric Bypass Surgery. ACS Chemical Neuroscience, 2014, 5, 943-951.	3.5	18
119	Perfusion controls muscle glucose uptake by altering the rate of glucose dispersion in vivo. American Journal of Physiology - Endocrinology and Metabolism, 2019, 317, E1022-E1036.	3.5	18
120	Whole Body Irradiation Induces Diabetes and Adipose Insulin Resistance in Nonhuman Primates. International Journal of Radiation Oncology Biology Physics, 2020, 106, 878-886.	0.8	18
121	Exercise and Adipose Tissue Immunity: Outrunning Inflammation. Obesity, 2021, 29, 790-801.	3.0	18
122	Multitissue 2H/13C flux analysis reveals reciprocal upregulation of renal gluconeogenesis in hepatic PEPCK-C–knockout mice. JCI Insight, 2021, 6, .	5.0	18
123	Hepatic Denervation Alters the Transition from the Fed to the Food-Deprived State in Conscious Dogs. Journal of Nutrition, 1993, 123, 1739-1746.	2.9	17
124	Prevention of Overt Hypoglycemia During Exercise: Stimulation of Endogenous Glucose Production Independent of Hepatic Catecholamine Action and Changes in Pancreatic Hormone Concentration. Diabetes, 2002, 51, 1310-1318.	0.6	17
125	Exercise-Induced Changes in Insulin and Glucagon Are Not Required for Enhanced Hepatic Glucose Uptake After Exercise but Influence the Fate of Glucose Within the Liver. Diabetes, 2004, 53, 3041-3047.	0.6	17
126	Cyclooxygenase-2 in adipose tissue macrophages limits adipose tissue dysfunction in obese mice. Journal of Clinical Investigation, 2022, 132, .	8.2	17

#	Article	IF	CITATIONS
127	Mesenchymal stem cell transplantation for the infarcted heart: a role in minimizing abnormalities in cardiac-specific energy metabolism. American Journal of Physiology - Endocrinology and Metabolism, 2012, 302, E163-E172.	3.5	16
128	Mesenchymal stem cell transplantation for the infarcted heart: therapeutic potential for insulin resistance beyond the heart. Cardiovascular Diabetology, 2013, 12, 128.	6.8	16
129	Adipocyte integrin-linked kinase plays a key role in the development of diet-induced adipose insulin resistance in male mice. Molecular Metabolism, 2021, 49, 101197.	6.5	14
130	Insulin, Muscle Glucose Uptake, and Hexokinase: Revisiting the Road Not Taken. Physiology, 2022, 37, 115-127.	3.1	14
131	Metabolic implications of reduced heart-type fatty acid binding protein in insulin resistant cardiac muscle. Biochimica Et Biophysica Acta - Molecular Basis of Disease, 2008, 1782, 586-592.	3.8	13
132	Reduced Nonexercise Activity Attenuates Negative Energy Balance in Mice Engaged in Voluntary Exercise. Diabetes, 2018, 67, 831-840.	0.6	13
133	Mouse Models of Bariatric Surgery. , 2012, 2012, 295.		13
134	Sympathetic drive to liver and nonhepatic splanchnic tissue during prolonged exercise is increased in diabetes. Metabolism: Clinical and Experimental, 1997, 46, 1327-1332.	3.4	12
135	Splanchnic glucagon kinetics in exercising alloxan-diabetic dogs. Journal of Applied Physiology, 1999, 86, 1626-1631.	2.5	12
136	Diminishing impairments in glucose uptake, mitochondrial content, and ADP-stimulated oxygen flux by mesenchymal stem cell therapy in the infarcted heart. American Journal of Physiology - Cell Physiology, 2014, 306, C19-C27.	4.6	12
137	Fibrotic Encapsulation Is the Dominant Source of Continuous Glucose Monitor Delays. Diabetes, 2019, 68, 1892-1901.	0.6	12
138	Energy metabolism couples hepatocyte integrin-linked kinase to liver glucoregulation and postabsorptive responses of mice in an age-dependent manner. American Journal of Physiology - Endocrinology and Metabolism, 2019, 316, E1118-E1135.	3 . 5	12
139	5-Aminoimidazole-4-carboxamide- $1-\hat{l}^2$ -d-ribofuranoside renders glucose output by the liver of the dog insensitive to a pharmacological increment in insulin. American Journal of Physiology - Endocrinology and Metabolism, 2005, 289, E1039-E1043.	3.5	11
140	Long Chain Fatty Acid Uptake In Vivo: Comparison of [¹²⁵ I]â€BMIPP and [³ H]â€Bromopalmitate. Lipids, 2008, 43, 703-11.	1.7	11
141	NIH Mouse Metabolic Phenotyping Centers: the power of centralized phenotyping. Mammalian Genome, 2012, 23, 623-631.	2.2	11
142	Transendothelial Insulin Transport is Impaired in Skeletal Muscle Capillaries of Obese Male Mice. Obesity, 2020, 28, 303-314.	3.0	11
143	Reciprocity Between Skeletal Muscle AMPK Deletion and Insulin Action in Diet-Induced Obese Mice. Diabetes, 2020, 69, 1636-1649.	0.6	11
144	Lost in Translation. Diabetes, 2009, 58, 1947-1950.	0.6	10

#	Article	IF	CITATIONS
145	Transgenic Mice Overexpressing Renin Exhibit Glucose Intolerance and Diet-Genotype Interactions. Frontiers in Endocrinology, 2012, 3, 166.	3.5	10
146	Enhanced Glucose Transport, but not Phosphorylation Capacity, Ameliorates Lipopolysaccharide-Induced Impairments in Insulin-Stimulated Muscle Glucose Uptake. Shock, 2016, 45, 677-685.	2.1	10
147	Mitochondrial antioxidative capacity regulates muscle glucose uptake in the conscious mouse: effect of exercise and diet. Journal of Applied Physiology, 2012, 113, 1173-1183.	2.5	9
148	Acute Nitric Oxide Synthase Inhibition Accelerates Transendothelial Insulin Efflux In Vivo. Diabetes, 2018, 67, 1962-1975.	0.6	9
149	Collagen 24 $\hat{l}\pm 1$ Is Increased in Insulin-Resistant Skeletal Muscle and Adipose Tissue. International Journal of Molecular Sciences, 2020, 21, 5738.	4.1	9
150	Pancreatic innervation is not essential for exercise-induced changes in glucagon and insulin or glucose kinetics. American Journal of Physiology - Endocrinology and Metabolism, 1999, 277, E1122-E1129.	3.5	8
151	Hepatic \hat{l}_{\pm} - and \hat{l}^2 -adrenergic receptors are not essential for the increase in R _a during exercise in diabetes. American Journal of Physiology - Endocrinology and Metabolism, 2000, 278, E444-E451.	3.5	8
152	Automated quantification of microvascular perfusion. Microcirculation, 2018, 25, e12482.	1.8	8
153	Dysregulated transmethylation leading to hepatocellular carcinoma compromises redox homeostasis and glucose formation. Molecular Metabolism, 2019, 23, 1-13.	6.5	8
154	Meta-fibrosis links positive energy balance and mitochondrial metabolism to insulin resistance. F1000Research, 2017, 6, 1758.	1.6	8
155	Rapid changes in the microvascular circulation of skeletal muscle impair insulin delivery during sepsis. American Journal of Physiology - Endocrinology and Metabolism, 2019, 316, E1012-E1023.	3.5	7
156	Regulation of hepatic glutamine metabolism during exercise in the dog. American Journal of Physiology - Endocrinology and Metabolism, 1998, 275, E655-E664.	3.5	6
157	Regulation of Endogenous Glucose Production in Glucose Transporter 4 Over-Expressing Mice. PLoS ONE, 2012, 7, e52355.	2.5	5
158	CETP Expression Protects Female Mice from Obesity-Induced Decline in Exercise Capacity. PLoS ONE, 2015, 10, e0136915.	2.5	5
159	Gut and liver fat metabolism in depancreatized dogs: effects of exercise and acute insulin infusion. Journal of Applied Physiology, 1997, 83, 1339-1347.	2.5	4
160	Regulation of glucose kinetics during exercise by the glucagonâ€ike peptideâ€1 receptor. Journal of Physiology, 2012, 590, 5245-5255.	2.9	4
161	Devoured by our own children: the possibility and peril of moral status enhancement. Journal of Medical Ethics, 2013, 39, 78-79.	1.8	4
162	Influence of the integrin alpha-1 subunit and its relationship with high-fat diet upon extracellular matrix synthesis in skeletal muscle and tendon. Cell and Tissue Research, 2020, 381, 177-187.	2.9	4

#	Article	IF	Citations
163	Capillary Endothelial Insulin Transport: The Rate-limiting Step for Insulin-stimulated Glucose Uptake. Endocrinology, 2022, 163, .	2.8	4
164	Point-Counterpoint: Glucose phosphorylation is/is not a significant barrier to muscle glucose uptake by the working muscle. Journal of Applied Physiology, 2006, 101, 1803-1805.	2.5	3
165	Reply to Letter to the Editor: Perfusion controls muscle glucose uptake by altering the rate of glucose dispersion in vivo. American Journal of Physiology - Endocrinology and Metabolism, 2020, 318, E313-E317.	3.5	3
166	EET Analog Treatment Improves Insulin Signaling in a Genetic Mouse Model of Insulin Resistance. Diabetes, 2021, , db210298.	0.6	3
167	Increased oxygen consumption and OXPHOS potential in superhealer mesenchymal stem cells. Cell Regeneration, 2012, 1, 1:3.	2.6	2
168	Peeling back the layers of the glucose clamp. Nature Metabolism, 2022, 4, 496-498.	11.9	2
169	An Unjustified Exception to an Unjust Law?. American Journal of Bioethics, 2009, 9, 63-65.	0.9	1
170	Role of the Endocrine Pancreas in Glucose Homeostasis During Exercise. Canadian Journal of Diabetes, 2010, 34, 188-190.	0.8	0
171	American Heart Association Vascular Disease Strategically Focused Research Network. Arteriosclerosis, Thrombosis, and Vascular Biology, 2020, 40, e47-e54.	2.4	0
172	Glycogen Synthase Kinase 3 Inhibition Improves Insulin Stimulated Glucose Metabolismin High Fat Fed C57/BL6J Mice. FASEB Journal, 2007, 21, A832.	0.5	0
173	Determinants of glucose tolerance in inbred mouse strains. FASEB Journal, 2007, 21, A829.	0.5	0
174	Activation of glucagon receptor signaling stimulates regulators of hepatic fat oxidation in vivo. FASEB Journal, 2008, 22, 948.16.	0.5	0
175	FVB/N mice are hypersensitive to moderate insulinâ€induced hypoglycemia while 129X1 mice are completely insensitive. FASEB Journal, 2008, 22, 949.8.	0.5	0
176	Oxidative stress limits exercise―and insulinâ€stimulated muscle glucose uptake (MGU) in conscious, chowâ€fed C57BL/6J mice. FASEB Journal, 2009, 23, 990.32.	0.5	0
177	Elevated oxygen utilization and superior energetic reserve in superhealer mesenchymal stem cells. FASEB Journal, 2012, 26, 887.7.	0.5	0
178	Quantitative capillary blood flow spatial analysis in skeletal muscle during sepsis. FASEB Journal, 2018, 32, .	0.5	0
179	Skeletal Muscle Parvin Regulates Exercise Tolerance and Glucose Homeostasis in Mice. FASEB Journal, 2018, 32, 853.4.	0.5	0
180	Integrinâ€Linked Kinase is Necessary for Normal Hepatic Glycogen Storage and Energy Metabolism. FASEB Journal, 2018, 32, .	0.5	0

#	Article	IF	CITATIONS
181	SIRT2 is required for in vivo tissueâ€specific and whole body insulin action in mice. FASEB Journal, 2018, 32, 864.6.	0.5	О
182	Automated Quantitation of Microvascular Perfusion Parameters Using Fluorescence Videomicroscopy and Computational Image Processing. FASEB Journal, 2018, 32, 577.3.	0.5	0
183	Acute nitric oxide synthase inhibition enhances transâ€endothelial insulin efflux and muscle insulin sensitivity in vivo. FASEB Journal, 2018, 32, 846.3.	0.5	O
184	Obese Mice Are Protected From Increased Energy Intake in Response to Voluntary Wheel Running. FASEB Journal, 2018, 32, 853.22.	0.5	0
185	Rapid changes in the microvascular circulation of skeletal muscle impair insulin delivery during sepsis. FASEB Journal, 2019, 33, 685.4.	0.5	0