Katarzyna Dybka

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3877525/publications.pdf

Version: 2024-02-01

		1163117	1199594	
15	461	8	12	
papers	citations	h-index	g-index	
16	16	16	575	
all docs	docs citations	times ranked	citing authors	

#	Article	IF	Citations
1	Mild enzymatic treatment of bleached pulp for tissue production. BioResources, 2021, 16, 4221-4236.	1.0	2
2	The Renaissance of Plant Mucilage in Health Promotion and Industrial Applications: A Review. Nutrients, 2021, 13, 3354.	4.1	27
3	Disposable Food Packaging and Serving Materialsâ€"Trends and Biodegradability. Polymers, 2021, 13, 3606.	4.5	31
4	When Salt Meddles Between Plant, Soil, and Microorganisms. Frontiers in Plant Science, 2020, 11, 553087.	3.6	83
5	Assessment of Microbiological Indoor Air Quality in Cattle Breeding Farms. Aerosol and Air Quality Research, 2020, 20, 1353-1373.	2.1	9
6	Advances in Chemical and Biological Methods to Identify Microorganisms—From Past to Present. Microorganisms, 2019, 7, 130.	3.6	246
7	lzolacja i identyfikacja szczepów bakterii kwasu octowego o potencjalnych wÅ,aÅ›ciwoÅ›ciach prozdrowotnych. śywność, 2019, 120, 183-195.	0.1	4
8	Processing of Miscanthus × giganteus stalks into various sodaÂand kraftÂpulps. Part I: Chemical composition, types of cells and pulping effects. Cellulose, 2018, 25, 6731-6744.	4.9	13
9	Disinfection of archival documents using thyme essential oil, silver nanoparticles misting and low temperature plasma. Journal of Cultural Heritage, 2017, 24, 69-77.	3.3	33
10	Selected Grass Plants as Biomass Fuels and Raw Materials for Papermaking, Part II. Pulp and Paper Properties. BioResources, 2015, 10, .	1.0	9
11	Dynamics of calcium L-lactate fermentation by Lactobacillus rhamnosus in sugar beet thick juice and glucose based media. New Biotechnology, 2014, 31, S150.	4.4	O
12	Xylose fermentation to optically pure l-lactate by isolates of Enterococcus faecium. New Biotechnology, 2012, 29, S62.	4.4	3
13	Isolation and characterization of Enterococcus faecium strains for calcium l-lactate production. New Biotechnology, 2012, 29, S56.	4.4	0
14	Calcium l-lactate recovery from l-lactic acid fermentation process. New Biotechnology, 2012, 29, S54.	4.4	0
15	l-Lactic acid production from rye and oat grains. New Biotechnology, 2012, 29, S174.	4.4	1