Andreas Kaltzoglou

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3876998/publications.pdf

Version: 2024-02-01

87888 49909 7,779 105 38 87 citations h-index g-index papers 110 110 110 11559 docs citations citing authors all docs times ranked

#	Article	IF	CITATIONS
1	Synthesis, Crystal Structure, and Broadband Emission of (CH ₃) ₃ SSnCl ₃ . Inorganic Chemistry, 2022, 61, 4769-4777.	4.0	3
2	Silver decorated TiO2/g-C3N4 bifunctional nanocomposites for photocatalytic elimination of water pollutants under UV and artificial solar light. Results in Engineering, 2022, 14, 100470.	5.1	30
3	Perovskite Solar Cells and Thermoelectric Generator Hybrid Array Feeding a Synchronous Reluctance Motor for an Efficient Water Pumping System. Mathematics, 2022, 10, 2417.	2.2	3
4	Energy band tuning induced by g-C3N4 interface engineering for efficient and stable perovskite solar cells. Materials Today Communications, 2022, 32, 103899.	1.9	6
5	Enhancing efficiency and decreasing photocatalytic degradation of perovskite solar cells using a hydrophobic copper-modified titania electron transport layer. Applied Catalysis B: Environmental, 2021, 284, 119714.	20.2	42
6	A Review on Emerging Efficient and Stable Perovskite Solar Cells Based on g-C3N4 Nanostructures. Materials, 2021, 14, 1679.	2.9	16
7	Synthesis, characterization and optoelectronic properties of 2D hybrid RPbX4 semiconductors based on an isomer mixture of hexanediamine-based dications. Zeitschrift Fur Naturforschung - Section B Journal of Chemical Sciences, 2021, .	0.7	O
8	Recent developments on hybrid perovskite materials for solar energy conversion and environmental protection. Current Opinion in Chemical Engineering, 2021, 33, 100708.	7.8	11
9	Defect passivation and humidity protection for perovskite solar cells enabled by 1-dodecanethiol. Journal of Materials Chemistry C, 2021, 9, 9584-9591.	5.5	20
10	A Modified Triple-Diode Model Parameters Identification for Perovskite Solar Cells via Nature-Inspired Search Optimization Algorithms. Sustainability, 2021, 13, 12969.	3.2	6
11	Investigating the role of reduced graphene oxide as a universal additive in planar perovskite solar cells. Journal of Photochemistry and Photobiology A: Chemistry, 2020, 386, 112141.	3.9	47
12	Synthesis, characterization of ((CH3)3S)2SnI6-nCln and ((CH3)3S)2SnI6-nBrn (n=1, 2) perovskites and use in dye-sensitized solar cells. Materials Chemistry and Physics, 2020, 239, 122310.	4.0	16
13	Magnetically separable TiO2/CoFe2O4/Ag nanocomposites for the photocatalytic reduction of hexavalent chromium pollutant under UV and artificial solar light. Chemical Engineering Journal, 2020, 381, 122730.	12.7	88
14	Enhanced Organic and Perovskite Solar Cell Performance through Modification of the Electron-Selective Contact with a Bodipy–Porphyrin Dyad. ACS Applied Materials & mp; Interfaces, 2020, 12, 1120-1131.	8.0	27
15	Manganese Porphyrin Interface Engineering in Perovskite Solar Cells. ACS Applied Energy Materials, 2020, 3, 7353-7363.	5.1	17
16	Surfactant Effects on the Synthesis of Redox Bifunctional V2O5 Photocatalysts. Materials, 2020, 13, 4665.	2.9	20
17	Energy efficiency improvement of water pumping system using synchronous reluctance motor fed by perovskite solar cells. International Journal of Energy Research, 2020, 44, 11629-11642.	4.5	19
18	Suppressing the Photocatalytic Activity of Zinc Oxide Electron-Transport Layer in Nonfullerene Organic Solar Cells with a Pyrene-Bodipy Interlayer. ACS Applied Materials & Samp; Interfaces, 2020, 12, 21961-21973.	8.0	57

#	Article	IF	Citations
19	Molecular materials as interfacial layers and additives in perovskite solar cells. Chemical Society Reviews, 2020, 49, 4496-4526.	38.1	130
20	Boosting perovskite nanomorphology and charge transport properties ⟨i⟩via⟨ i⟩ a functional D–π-A organic layer at the absorber/hole transporter interface. Nanoscale, 2020, 12, 15137-15149.	5.6	21
21	Halogen–NH ₂ ⁺ Interaction, Temperature-Induced Phase Transition, and Ordering in (NH ₂ CHNH ₂)PbX ₃ (X = Cl, Br, I) Hybrid Perovskites. Journal of Physical Chemistry C, 2020, 124, 8479-8487.	3.1	32
22	Stability Improvement and Performance Reproducibility Enhancement of Perovskite Solar Cells Following (FA/MA/Cs)PbI _{3–<i>x</i>} Br _{<i>x</i>} /(CH ₃) ₃ SPbI ₃ Dimensionality Engineering. ACS Applied Energy Materials, 2020, 3, 2465-2477.	ມ ^{ົວ,1}	44
23	Dye Engineered Perovskite Solar Cells under Accelerated Thermal Stress and Prolonged Light Exposure. ChemistrySelect, 2020, 5, 4454-4462.	1.5	13
24	Mixing cations and halide anions in perovskite solar cells. Materials Today: Proceedings, 2019, 19, 73-78.	1.8	8
25	High performance solid state solar cells incorporating CdS quantum dots and CH3NH3PbI3 perovskite. Materials Today: Proceedings, 2019, 19, 79-85.	1.8	3
26	Synthesis and Characterization of Lead-Free (CH3)3SSnI3 1-D Perovskite. Journal of Electronic Materials, 2019, 48, 7533-7538.	2.2	13
27	Lithium Doping of ZnO for High Efficiency and Stability Fullerene and Non-fullerene Organic Solar Cells. ACS Applied Energy Materials, 2019, 2, 1663-1675.	5.1	52
28	Synthesis of novel semi-squaraine derivatives and application in efficient dye-sensitized solar cells. Dyes and Pigments, 2019, 165, 308-318.	3.7	11
29	Optimal Performance Emulation of PSCs using the Elephant Herd Algorithm Associated with Experimental Validation. ECS Journal of Solid State Science and Technology, 2019, 8, Q249-Q255.	1.8	25
30	Bifunctional g-C3N4/WO3 Thin Films for Photocatalytic Water Purification. Water (Switzerland), 2019, 11, 2439.	2.7	32
31	Photocatalysis as an advanced reduction process (ARP): The reduction of 4-nitrophenol using titania nanotubes-ferrite nanocomposites. Journal of Hazardous Materials, 2019, 372, 37-44.	12.4	66
32	Photocatalytic properties of copperâ€"Modified core-shell titania nanocomposites. Journal of Photochemistry and Photobiology A: Chemistry, 2019, 370, 145-155.	3.9	25
33	A silanol-functionalized polyoxometalate with excellent electron transfer mediating behavior to ZnO and TiO ₂ cathode interlayers for highly efficient and extremely stable polymer solar cells. Journal of Materials Chemistry C, 2018, 6, 1459-1469.	5.5	25
34	Synthesis, characterization and optoelectronic properties of chemically stable (CH 3) 3 SPbI 3â^' x Br x and (CH 3) 3 SPbI 3â^' x Cl x (x †= †0, 1, 2, 3) perovskites. Polyhedron, 2018, 140, 67-73.	2.2	25
35	Dynamic Disorder, Band Gap Widening, and Persistent Near-IR Photoluminescence up to At Least 523 K in ASnI ₃ Perovskites (A = Cs ⁺ , CH ₃ NH ₃ ⁺) Tj ETC 26353-26361.]q1 1 0.78 3.1	84314 rgBT
36	Dye Sensitization of Titania Compact Layer for Efficient and Stable Perovskite Solar Cells. ACS Applied Energy Materials, 2018, 1, 6161-6171.	5.1	41

#	Article	IF	CITATIONS
37	Defect Perovskites under Pressure: Structural Evolution of Cs $<$ sub $>$ 2 $<$ /sub $>$ SnX $<$ sub $>$ 6 $<$ /sub $>$ (X = Cl,) Tj ETQq1 1	0.78431 3.7	4 rgBT /Ove
38	Engineering of Porphyrin Molecules for Use as Effective Cathode Interfacial Modifiers in Organic Solar Cells of Enhanced Efficiency and Stability. ACS Applied Materials & Samp; Interfaces, 2018, 10, 20728-20739.	8.0	22
39	Insights into the passivation effect of atomic layer deposited hafnium oxide for efficiency and stability enhancement in organic solar cells. Journal of Materials Chemistry C, 2018, 6, 8051-8059.	5.5	20
40	Recent developments of TiO2 photocatalysis involving advanced oxidation and reduction reactions in water. Journal of Environmental Chemical Engineering, 2018, 6, 7386-7394.	6.7	59
41	Synthesis, characterization and use of highly stable trimethyl sulfonium tin(IV) halide defect perovskites in dye sensitized solar cells. Polyhedron, 2018, 150, 83-91.	2.2	31
42	Triazine-Substituted Zinc Porphyrin as an Electron Transport Interfacial Material for Efficiency Enhancement and Degradation Retardation in Planar Perovskite Solar Cells. ACS Applied Energy Materials, 2018, 1, 3216-3229.	5.1	33
43	Photocatalytic degradation of salicylic acid and caffeine emerging contaminants using titania nanotubes. Chemical Engineering Journal, 2017, 310, 525-536.	12.7	119
44	Avoiding ambient air and light induced degradation in high-efficiency polymer solar cells by the use of hydrogen-doped zinc oxide as electron extraction material. Nano Energy, 2017, 34, 500-514.	16.0	45
45	Cost-efficient platinum-free DSCs using colloidal graphite counter electrodes combined with D35 organic dye and cobalt (II/III) redox couple. Electrochimica Acta, 2017, 232, 517-527.	5.2	12
46	Trimethylsulfonium Lead Triiodide: An Air-Stable Hybrid Halide Perovskite. Inorganic Chemistry, 2017, 56, 6302-6309.	4.0	52
47	Structural Stability, Vibrational Properties, and Photoluminescence in CsSnI ₃ Perovskite upon the Addition of SnF ₂ . Inorganic Chemistry, 2017, 56, 84-91.	4.0	105
48	Low Work Function Lacunary Polyoxometalates as Electron Transport Interlayers for Inverted Polymer Solar Cells of Improved Efficiency and Stability. ACS Applied Materials & Samp; Interfaces, 2017, 9, 22773-22787.	8.0	23
49	The Influence of Mobile Copper Ions on the Glass-Like Thermal Conductivity of Copper-Rich Tetrahedrites. Chemistry of Materials, 2017, 29, 4080-4090.	6.7	66
50	Slow-photon enhancement of dye sensitized TiO 2 photocatalysis. Materials Letters, 2017, 197, 123-126.	2.6	42
51	A 3D graphene-based biosensor as an early microcystin-LR screening tool in sources of drinking water supply. Electrochimica Acta, 2017, 236, 319-327.	5.2	62
52	Improved Stability of Polymer Solar Cells in Ambient Air via Atomic Layer Deposition of Ultrathin Dielectric Layers. Advanced Materials Interfaces, 2017, 4, 1700231.	3.7	8
53	Stress Tests on Dye-sensitized Solar Cells with the Cs2Snl6 Defect Perovskite as Hole-transporting Material. Energy Procedia, 2016, 102, 49-55.	1.8	14
54	Thermoelectric Materials: A New Rapid Synthesis Process for Nontoxic and Highâ€Performance Tetrahedrite Compounds. Journal of the American Ceramic Society, 2016, 99, 51-56.	3.8	62

#	Article	IF	CITATIONS
55	Optical-Vibrational Properties of the Cs ₂ SnX ₆ (X = Cl, Br, I) Defect Perovskites and Hole-Transport Efficiency in Dye-Sensitized Solar Cells. Journal of Physical Chemistry C, 2016, 120, 11777-11785.	3.1	222
56	Use of selected scavengers for the determination of NF-TiO2 reactive oxygen species during the degradation of microcystin-LR under visible light irradiation. Journal of Molecular Catalysis A, 2016, 425, 183-189.	4.8	157
57	Dynamic Stereochemical Activity of the Sn ²⁺ Lone Pair in Perovskite CsSnBr ₃ . Journal of the American Chemical Society, 2016, 138, 11820-11832.	13.7	217
58	Reentrant Structural and Optical Properties and Large Positive Thermal Expansion in Perovskite Formamidinium Lead Iodide. Angewandte Chemie - International Edition, 2016, 55, 15392-15396.	13.8	128
59	Halogen Effects on Ordering and Bonding of CH ₃ NH ₃ ⁺ in CH ₃ NH ₃ PbX ₃ (X = Cl, Br, l) Hybrid Perovskites: A Vibrational Spectroscopic Study. Journal of Physical Chemistry C, 2016, 120, 2509-2519.	3.1	188
60	Design and optimization of a photocatalytic reactor for water purification combining optical fiber and membrane technologies. Chemical Engineering Journal, 2016, 305, 92-103.	12.7	28
61	A Family of Potent Ru(<scp>II</scp>) Photosensitizers with Enhanced <scp>DNA</scp> Intercalation: Bimodal Photokillers. Photochemistry and Photobiology, 2015, 91, 1191-1202.	2.5	7
62	Structural stability of the synthetic thermoelectric ternary and nickel-substituted tetrahedrite phases. Journal of Alloys and Compounds, 2015, 634, 253-262.	5.5	147
63	Mixed-halide Cs2SnI3Br3 perovskite as low resistance hole-transporting material in dye-sensitized solar cells. Electrochimica Acta, 2015, 184, 466-474.	5.2	49
64	A Rutheniumâ€Based Lightâ€Harvesting Antenna Bearing an Anthracene Moiety in Dyeâ€Sensitized Solar Cells. Asian Journal of Organic Chemistry, 2014, 3, 953-962.	2.7	11
65	Ordered-Defect Sulfides as Thermoelectric Materials. Journal of Electronic Materials, 2014, 43, 2029-2034.	2.2	23
66	A Ru(II) molecular antenna bearing a novel bipyridine–acrylonitrile ligand: Synthesis and application in dye solar cells. Polyhedron, 2014, 82, 12-18.	2.2	7
67	Influence of Fluorine Plasma Treatment of TiO ₂ Films on the Behavior of Dye Solar Cells Employing the Co(II)/(III) Redox Couple. Journal of Physical Chemistry C, 2014, 118, 16760-16775.	3.1	17
68	Degradation of cylindrospermopsin by using polymorphic titanium dioxide under UV–Vis irradiation. Catalysis Today, 2014, 224, 49-55.	4.4	32
69	Influence of controlled-charge anodization processes on the morphology of TiO2 nanotubes and their efficiency in dye-sensitized solar cells. Electrochimica Acta, 2013, 113, 490-496.	5.2	14
70	High-temperature order–disorder transitions in the skutterudites CoGe1.5Q1.5 (Q=S, Te). Journal of Solid State Chemistry, 2013, 198, 525-531.	2.9	7
71	Dye solar cells combining a TiO2 surface-blocking organic sensitizer and solvent-free ionic liquid-based redox electrolyte. RSC Advances, 2013, 3, 15014.	3.6	14
72	Fabrication and Evaluation of a Skutterudite-Based Thermoelectric Module for High-Temperature Applications. Journal of Electronic Materials, 2013, 42, 1369-1374.	2.2	36

#	Article	IF	CITATIONS
73	TiO2, surface modified TiO2 and graphene oxide-TiO2 photocatalysts for degradation of water pollutants under near-UV/Vis and visible light. Chemical Engineering Journal, 2013, 224, 17-23.	12.7	87
74	Guest host interaction and low energy host structure dynamics in tin clathrates. Journal of Applied Physics, 2013, 113, 084902.	2.5	10
7 5	A Multiwalledâ€Carbonâ€Nanotubeâ€Based Biosensor for Monitoring Microcystin‣R in Sources of Drinking Water Supplies. Advanced Functional Materials, 2013, 23, 1807-1816.	14.9	87
76	Synthesis and thermoelectric properties of the new skutterudites YbxFe2Ni2Sb12 (0 ≤ ≤0.4)., 2012,,.		0
77	Thermoelectric exhaust-gas energy recovery: An integrated approach. , 2012, , .		2
78	A review on the visible light active titanium dioxide photocatalysts for environmental applications. Applied Catalysis B: Environmental, 2012, 125, 331-349.	20.2	3,320
79	Synthesis, characterization and physical properties of the skutterudites YbxFe2Ni2Sb12 (0â‰ x â‰ 9 .4). Journal of Solid State Chemistry, 2012, 193, 36-41.	2.9	18
80	Synthesis and spectroscopic characterization of new heteroleptic ruthenium(II) complexes incorporating 2-(2′-pyridyl)quinoxaline and 4-carboxy-2-(2′-pyridyl)quinoline. Journal of Coordination Chemistry, 2012, 65, 2535-2548.	2.2	8
81	Minimizing Energy Losses in Dyeâ€Sensitized Solar Cells Using Coordination Compounds as Alternative Redox Mediators Coupled with Appropriate Organic Dyes. Advanced Energy Materials, 2012, 2, 616-627.	19.5	87
82	Controlling and Quantifying Oxygen Functionalities on Hydrothermally and Thermally Treated Single-Wall Carbon Nanotubes. Journal of Physical Chemistry C, 2011, 115, 8534-8546.	3.1	55
83	Enhanced Openâ€Circuit Photopotential in Quasiâ€Solidâ€State Dyeâ€Sensitized Solar Cells Based on Polymer Redox Electrolytes Filled with Anodic Titania Nanotubes. Advanced Energy Materials, 2011, 1, 569-572.	19.5	19
84	CLEAN WATER: water detoxification using innovative photocatalysts. Reviews in Environmental Science and Biotechnology, 2010, 9, 87-94.	8.1	69
85	Structural stability of tin clathrates under high pressure. Journal of Physics and Chemistry of Solids, 2010, 71, 587-589.	4.0	2
86	Investigation of substitution effects and the phase transition in type-I clathrates Rb Cs8–Sn44â−¡2 (1.3≤â‰ਊ.1) using single-crystal X-ray diffraction, Raman spectroscopy, heat capacity and electrical resistivity measurements. Journal of Solid State Chemistry, 2009, 182, 2924-2929.	2.9	15
87	Enhanced Efficiency in Solidâ€State Dyeâ€Sensitized Solar Cells Based on Fractal Nanostructured TiO ₂ Thin Films. Small, 2008, 4, 770-776.	10.0	25
88	Synthesis and Crystal Structure of Mercury-Substituted Type-I Clathrates A8Hg4Sn42 (A = K, Rb, Cs). European Journal of Inorganic Chemistry, 2008, 2008, 538-542.	2.0	24
89	A ₄ Ge ₉ (A = K, Rb) as Precursors for Hgâ€Substituted Clathrate†Synthesis: Crystal Structure of A ₈ Hg ₃ Ge ₄₃ . European Journal of Inorganic Chemistry, 2008, 2008, 4507-4510.	2.0	19
90	Raman spectroscopy study of type-I clathrates A8Sn44 \hat{a} - \hat{i} 2 (A = Rb, Cs) and Rb8Hg4Sn42. Chemical Physics Letters, 2008, 464, 54-57.	2.6	14

#	Article	IF	CITATIONS
91	Phase Composition, Size, Orientation, and Antenna Effects of Self-Assembled Anodized Titania Nanotube Arrays: A Polarized Micro-Raman Investigation. Journal of Physical Chemistry C, 2008, 112, 12687-12696.	3.1	109
92	A luminescent copper(I) bromide complex chelated with 4,5- <i>bis</i> (diphenylphosphano)-9,9-dimethyl-xanthene. Journal of Coordination Chemistry, 2008, 61, 1774-1781.	2.2	7
93	Effects of the order–disorder phase transition on the physical properties of A8Sn44â−¡2 (A = Rb, Cs). Journal of Materials Chemistry, 2008, 18, 5630.	6.7	46
94	Highly Photoactive Monodidisperse Titania Hollow Nanospheres. Journal of Advanced Oxidation Technologies, $2008,11,.$	0.5	0
95	Catechol-Bearing Dipyrazinylpyridine Complexes of Ruthenium(II). European Journal of Inorganic Chemistry, 2007, 2007, 2121-2128.	2.0	20
96	Orderâ€Disorder Phase Transition in Typeâ€l Clathrate Cs ₈ Sn ₄₄ â−¡ ₂ . European Journal of Inorganic Chemistry, 2007, 2007, 4162-4167.	2.0	39
97	Silver(I) bromide complexes of the rigid diphosphanes 1,2-bis(diphenylphosphano)benzene (dppbz) and 4,5-bis(diphenylphosphano)-9,9-dimethyl-xanthene (xantphos): Crystal structures of [Ag(ν2-Br)(dppbz)]2, [AgBr(xantphos)] and [AgBr(xantphos)(py2SH)]. Polyhedron, 2007, 26, 1634-1642.	2.2	14
98	Copper(I) halide chelates of the wide bite angle diphosphane xantphos: Crystal structures of [CuBr(xantphos)(dmpymtH)] and [CuI(xantphos)(imdtH2)]·CH3CN. Inorganica Chimica Acta, 2006, 359, 3183-3190.	2.4	28
99	An Experimental and Theoretical (DFT) Investigation of the Coordination Mode of 2,4-Dithiouracil (2,4-dtucH2) in Copper(I) Complexes with1,2-Bis(diphenylphosphanyl)benzene (dppbz): The Crystal Structures of [Cu(I¼-Br)(dppbz)]2 and [CuBr(dppbz)(2,4-dtucH2)]. European Journal of Inorganic Chemistry, 2006, 2006, 334-344.	2.0	25
100	Synthesis and Characterization of New Rareâ€Earth Sandwichâ€Type Tungstoarsenates. Synthesis and Reactivity in Inorganic, Metal Organic, and Nano Metal Chemistry, 2006, 36, 335-344.	0.6	2
101	Copper(I) bromide complexes from 1,2-bis(diphenylphosphano) benzene and some heterocyclic thiones. Inorganica Chimica Acta, 2005, 358, 3048-3056.	2.4	41
102	New Organotin Derivatives of Trilacunary Keggin Polyanions. Synthesis and Reactivity in Inorganic, Metal Organic, and Nano Metal Chemistry, 2005, 35, 651-659.	0.6	0
103	Binary Polyethylene Oxide/Titania Solid-State Redox Electrolyte for Highly Efficient Nanocrystalline TiO2 Photoelectrochemical Cells. Nano Letters, 2002, 2, 1259-1261.	9.1	365
104	Bleaching Properties of Alumina-Pillared Acid-Activated Montmorillonite. Clays and Clay Minerals, 2000, 48, 549-556.	1.3	48
105	Raman Resonance Effect in a Monolayer of Polypyridyl Ruthenium(II) Complex Adsorbed on Nanocrystalline TiO2via Phosphonated Terpyridyl Ligands. Journal of Physical Chemistry B, 1999, 103, 9569-9575.	2.6	32