Serge Monneret

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3876971/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Metasurface Optical Characterization Using Quadriwave Lateral Shearing Interferometry. ACS Photonics, 2021, 8, 603-613.	6.6	21
2	Solutionâ€Processed Barium Titanate Nonlinear Woodpile Photonic Structures with Large Surface Areas. Physica Status Solidi (B): Basic Research, 2020, 257, 2070024.	1.5	1
3	Solutionâ€Processed Barium Titanate Nonlinear Woodpile Photonic Structures with Large Surface Areas. Physica Status Solidi (B): Basic Research, 2020, 257, 1900755.	1.5	8
4	Full optical characterization of single nanoparticles using quantitative phase imaging. Optica, 2020, 7, 243.	9.3	33
5	Microscale Temperature Shaping Using Spatial Light Modulation on Gold Nanoparticles. Scientific Reports, 2019, 9, 4644.	3.3	15
6	Large field-of-view phase and fluorescence mesoscope with microscopic resolution. Journal of Biomedical Optics, 2019, 24, 1.	2.6	10
7	Quantitative phase imaging of adherent mammalian cells: a comparative study. Biomedical Optics Express, 2019, 10, 2768.	2.9	15
8	Statistical study of blood cell populations by very wide-field bimodal phase/ fluorescence imaging. , 2019, , .		0
9	Quantitative Phase Imaging Biological Applications using Quadriwave Lateral Shearing Interferometry. Biophysical Journal, 2018, 114, 347a.	0.5	0
10	Quantitative retardance imaging by means of quadri-wave lateral shearing interferometry for label-free fiber imaging in tissues. Optics Communications, 2018, 422, 17-27.	2.1	12
11	Photothermal Control of Heatâ€Shock Protein Expression at the Single Cell Level. Small, 2018, 14, e1801910.	10.0	36
12	A Theoretical High-Density Nanoscopy Study Leads to the Design of UNLOC, a Parameter-free Algorithm. Biophysical Journal, 2018, 115, 565-576.	0.5	28
13	Image-based adaptive optics for in vivo imaging in the hippocampus. Scientific Reports, 2017, 7, 42924.	3.3	14
14	Fast quantitative retardance imaging of biological samples using quandri-wave interferometry (Conference Presentation). , 2017, , .		0
15	Optical Imaging and Characterization of Graphene and Other 2D Materials Using Quantitative Phase Microscopy. ACS Photonics, 2017, 4, 3130-3139.	6.6	43
16	Laser-induced birefringence measurements by quantitative polarized-phase microscopy. Optics Letters, 2017, 42, 1616.	3.3	13
17	Quantitative Phase Imaging biological applications using Quadri Wave Lateral Shearing Interferometry. , 2017, , .		0
18	New sensorless wavefront estimation approach for two-photon scanning microscopy. Proceedings of SPIE. 2017	0.8	0

#	Article	IF	Citations
19	Simultaneous multiscale and bimodal imaging using lensfree microscopy. Proceedings of SPIE, 2017, , .	0.8	0
20	Development of a laser damage growth mitigation process, based on CO2 laser micro processing, for the Laser MegaJoule fused silica optics. , 2016, , .		6
21	Time-resolved microscopy studies of laser damage dynamics at 0.5-1ps, 1030nm. , 2016, , .		0
22	Ultrathin endoscopes: nonlinear lensless imaging at the tip of a multimode fiber (Conference) Tj ETQq0 0 0 rgBT	/Overlock	10 Tf 50 622
23	Time-resolved quantitative-phase microscopy of laser-material interactions using a wavefront sensor. Optics Letters, 2016, 41, 3245.	3.3	9
24	Light-Assisted Solvothermal Chemistry Using Plasmonic Nanoparticles. ACS Omega, 2016, 1, 2-8.	3.5	53
25	CO2 laser microprocessing for laser damage growth mitigation of fused silica optics. Optical Engineering, 2016, 56, 1.	1.0	22
26	Label-free three-dimensional reconstruction of biological samples (Conference Presentation). , 2016, ,		0
27	Fast quantitative retardance imaging of biological samples using quadri-wave interferometry (Conference Presentation). , 2016, , .		0
28	Label-free three dimensional reconstruction of biological samples (Conference Presentation). , 2016, ,		0
29	Quantitative nanoscale imaging of orientational order in biological filaments by polarized superresolution microscopy. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, E820-8.	7.1	110
30	Ultra-thin rigid endoscope: two-photon imaging through a graded-index multi-mode fiber. Optics Express, 2016, 24, 825.	3.4	37
31	Quantitative phase imaging applied to laser damage detection and analysis. Applied Optics, 2015, 54, 8375.	2.1	21
32	Living cell dry mass measurement using quantitative phase imaging with quadriwave lateral shearing interferometry: an accuracy and sensitivity discussion. Journal of Biomedical Optics, 2015, 20, 126009.	2.6	80
33	Towards two-photon lensless endoscopes: inter-core group delay compensation in a multi-core fiber. Proceedings of SPIE, 2015, , .	0.8	0
34	Analysis of energy deposition and damage mechanisms in single layers of HfO ₂ and Nb ₂ O ₅ submitted to 500fs pulses. Proceedings of SPIE, 2015, , .	0.8	0
35	Three-dimensional nanometre localization of nanoparticles to enhance super-resolution microscopy. Nature Communications, 2015, 6, 7764.	12.8	73

Laser damage measurement techniques for the femtosecond regime. , 2015, , .

1

SERGE MONNERET

SERGE MONNERET

#	Article	IF	CITATIONS
37	Quantitative retardance imaging of biological samples using quadriwave lateral shearing interferometry. Optics Express, 2015, 23, 16383.	3.4	48
38	Measurement and compensation of residual group delay in a multi-core fiber for lensless endoscopy. Journal of the Optical Society of America B: Optical Physics, 2015, 32, 1221.	2.1	21
39	Towards two-photon lensless endoscopes: Inter-core group delay compensation in a multi-core fiber. , 2015, , .		1
40	In-line quantitative phase imaging for damage detection and analysis. Proceedings of SPIE, 2014, , .	0.8	0
41	Enhanced 3D spatial resolution in quantitative phase microscopy using spatially incoherent illumination. Optics Express, 2014, 22, 8654.	3.4	36
42	Super-Heating and Micro-Bubble Generation around Plasmonic Nanoparticles under cw Illumination. Journal of Physical Chemistry C, 2014, 118, 4890-4898.	3.1	273
43	Deterministic temperature shaping using plasmonic nanoparticle assemblies. Nanoscale, 2014, 6, 8984-8989.	5.6	39
44	Tomographic Incoherent Phase Imaging, a Diffraction Tomography Alternative. Biophysical Journal, 2014, 106, 603a.	0.5	0
45	Quantitative Retardance Imaging using Quadri-Wave Lateral Shearing Interferometry (QWLSI). Biophysical Journal, 2014, 106, 602a.	0.5	0
46	Polarized Resolved Single-Molecule Localization-Based Super-Resolution Fluorescence Microscopy Reveals Orientation Order in Bio-Molecular Assemblies. Biophysical Journal, 2014, 106, 203a-204a.	0.5	2
47	Dry Mass and Cell Cycle Follow-Up from Quantitative Phase Imaging. Biophysical Journal, 2014, 106, 575a.	0.5	Ο
48	Independent Synchronized Control and Visualization of Interactions between Living Cells and Organisms. Biophysical Journal, 2014, 106, 2096-2104.	0.5	25
49	Photoinduced Heating of Nanoparticle Arrays. ACS Nano, 2013, 7, 6478-6488.	14.6	351
50	Two-photon lensless endoscope. Optics Express, 2013, 21, 20713.	3.4	71
51	Three-dimensional temperature imaging around a gold microwire. Applied Physics Letters, 2013, 102, 244103.	3.3	23
52	Quantitative birefringence imaging of biological samples using quadri-wave interferometry. Proceedings of SPIE, 2013, , .	0.8	1
53	Wide-field vibrational phase imaging in an extremely folded box-CARS geometry. Optics Letters, 2013, 38, 709.	3.3	16
54	Toward endoscopes with no distal optics: video-rate scanning microscopy through a fiber bundle. Optics Letters, 2013, 38, 609.	3.3	73

4

#	Article	IF	CITATIONS
55	Tomographic incoherent phase imaging, a diffraction tomography alternative for any white-light microscope. , 2013, , .		6
56	Towards endoscopes with no distal optics. , 2013, , .		0
57	Quadriwave lateral shearing interferometry as a quantification tool for microscopy. Application to dry mass determination of living cells, temperature mapping, and vibrational phase imaging. Proceedings of SPIE, 2013, , .	0.8	3
58	Tomographic diffractive microscopy with a wavefront sensor. Optics Letters, 2012, 37, 1631.	3.3	16
59	Optical detection and measurement of living cell morphometric features with single-shot quantitative phase microscopy. Journal of Biomedical Optics, 2012, 17, 0760041.	2.6	43
60	Multi-lateral shearing interferometry: Principle and application to X-ray phase imaging. , 2012, , .		2
61	Imaging the Gouy phase shift in photonic jets with a wavefront sensor. Optics Letters, 2012, 37, 3531.	3.3	12
62	Noniterative boundary-artifact-free wavefront reconstruction from its derivatives. Applied Optics, 2012, 51, 5698.	1.8	71
63	Modeling quantitative phase image formation under tilted illuminations. Optics Letters, 2012, 37, 1718.	3.3	18
64	Wide-Field Vibrational Phase Imaging. Physical Review Letters, 2012, 109, 093902.	7.8	17
65	Advanced microscopy techniques for biological imaging. International Journal of Nanotechnology, 2012, 9, 548.	0.2	0
66	Thermal Imaging of Nanostructures by Quantitative Optical Phase Analysis. ACS Nano, 2012, 6, 2452-2458.	14.6	188
67	Correlative Microscopy of Living Cells between Fluorescence and Quantitative Phase Imaging with a High Resolution Wavefront Sensor. Biophysical Journal, 2011, 100, 356a.	0.5	1
68	Quadriwave lateral shearing interferometry for quantitative phase microscopy: coupling phase imaging and fluorescence imaging. Proceedings of SPIE, 2011, , .	0.8	0
69	Quadriwave lateral shearing interferometry for quantitative phase microscopy: applications to long-duration imaging. Proceedings of SPIE, 2010, , .	0.8	0
70	Quadriwave lateral shearing interferometry for quantitative phase microscopy of living cells. Optics Express, 2009, 17, 13080.	3.4	425
71	Multiple holographic optical tweezers parallel calibration with optical potential well characterization. Optics Express, 2008, 16, 9011.	3.4	10
72	Quantitative characterization of potential energy landscape in holographic optical tweezers. Proceedings of SPIE, 2008, , .	0.8	0

SERGE MONNERET

#	Article	IF	CITATIONS
73	Quadrant kinoform: an approach to multiplane dynamic three-dimensional holographic trapping. Applied Optics, 2007, 46, 4587.	2.1	6
74	Combining fluidic reservoirs and optical tweezers to control beads/living cells contacts. Microfluidics and Nanofluidics, 2007, 3, 645-652.	2.2	11
75	Interactive space-time controlled application of different stimuli for cells dynamics study. , 2006, 6326, 166.		1
76	Practical lab tool for living cells based on microstereolithography and multiple dynamic holographic optical tweezers. , 2006, 6088, 273.		3
77	Highly flexible whole-field sectioning microscope with liquid-crystal light modulator. Journal of Optics, 2006, 8, S461-S466.	1.5	9
78	Complex Three-Dimensional Fluidic Reservoirs to Control Beads/Living Cells Contacts. , 2006, , .		0
79	La microstéréolithographie et ses applications. Mecanique Et Industries, 2005, 6, 457-462.	0.2	1
80	Three-Dimensional Ceramic Microcomponents Made Using Microstereolithography. Advanced Materials, 2003, 15, 994-997.	21.0	43
81	Dynamic UV microstereolithography. EPJ Applied Physics, 2002, 20, 213-218.	0.7	7
82	Complex ceramic-polymer composite microparts made by microstereolithography. IEEE Transactions on Electronics Packaging Manufacturing, 2002, 25, 59-63.	1.4	35
83	Microfabrication of freedom and articulated alumina-based components. Microsystem Technologies, 2002, 8, 368-374.	2.0	14
84	Image upconversion from the visible to the UV domain: application to dynamic UV microstereolithography. Applied Optics, 2001, 40, 4953.	2.1	10
85	<title>Complex ceramic-polymer composite microparts made by microstereolithography</title> . , 2001, 4408, 535.		2
86	Refractive index modifications and thermal properties of optical thin films with the prism coupler. , 2000, , .		0
87	m-lines technique: prism coupling measurement and discussion of accuracy for homogeneous waveguides. Journal of Optics, 2000, 2, 188-195.	1.5	70
88	Microstereolithography using a dynamic mask generator and a noncoherent visible light source. , 1999, 3680, 553.		39
89	Resonant focusing in a planar microcavity. Journal of the Optical Society of America B: Optical Physics, 1998, 15, 2712.	2.1	5
90	Spontaneous emission of rare-earth ions confined in planar multilayer dielectric microcavities. , 1997,		1

SERGE MONNERET

#	Article	IF	CITATIONS
91	Adjustable phase-locking of two Nd:glass ring laser beams. Optics Communications, 1997, 141, 123-126.	2.1	2
92	Fluorescence of Ta_2O_5 thin films doped by kilo-electron-volt Er implantation: application to microcavities. Applied Optics, 1996, 35, 5005.	2.1	24
93	Light-induced refractive-index modifications in dielectric thin films: experimental determination of relaxation time and amplitude. Applied Optics, 1996, 35, 5013.	2.1	6
94	Optical Waveguide Characterization of Thin Films The Review of Laser Engineering, 1996, 24, 94-102.	0.0	2
95	<title>Multispectral measurements of slightly anisotropic thin films by guided optics method</title> . , 1996, 2782, 674.		0
96	Modal analysis of spontaneous emission in a planar microcavity. Physical Review A, 1996, 54, 2356-2368.	2.5	86
97	Nonlinear totally reflecting prism coupler: thermomechanic effects and intensity-dependent refractive index of thin films. Applied Optics, 1995, 34, 4358.	2.1	21
98	Propriétés radiatives d'atomes luminescents placés dans une microcavité planaire. Annales De Physique, 1995, 20, 625-626.	0.2	1
99	Micro-scale rapid prototyping by stereolithography. , 0, , .		2