## Frank M Flechtner

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3876788/publications.pdf Version: 2024-02-01



FDANK M FLECHTNED

| #  | Article                                                                                                                                                                                                      | IF  | CITATIONS |
|----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 1  | Contributions of GRACE to understanding climate change. Nature Climate Change, 2019, 9, 358-369.                                                                                                             | 8.1 | 536       |
| 2  | Extending the Global Mass Change Data Record: GRACE Followâ€On Instrument and Science Data<br>Performance. Geophysical Research Letters, 2020, 47, e2020GL088306.                                            | 1.5 | 330       |
| 3  | An Earth gravity field model complete to degree and order 150 from GRACE: EIGEN-GRACE02S. Journal of Geodynamics, 2005, 39, 1-10.                                                                            | 0.7 | 279       |
| 4  | GRACE observations of changes in continental water storage. Global and Planetary Change, 2006, 50, 112-126.                                                                                                  | 1.6 | 204       |
| 5  | The GeoForschungsZentrum Potsdam/Groupe de Recherche de Gèodésie Spatiale satellite-only and<br>combined gravity field models: EIGEN-GL04S1 and EIGEN-GL04C. Journal of Geodesy, 2008, 82, 331-346.          | 1.6 | 204       |
| 6  | A new high-resolution model of non-tidal atmosphere and ocean mass variability for de-aliasing of satellite gravity observations: AOD1B RL06. Geophysical Journal International, 2017, 211, 263-269.         | 1.0 | 174       |
| 7  | ICGEM – 15 years of successful collection and distribution of global gravitational models, associated services, and future plans. Earth System Science Data, 2019, 11, 647-674.                              | 3.7 | 172       |
| 8  | In-Orbit Performance of the GRACE Follow-on Laser Ranging Interferometer. Physical Review Letters, 2019, 123, 031101.                                                                                        | 2.9 | 161       |
| 9  | What Can be Expected from the GRACE-FO Laser Ranging Interferometer for Earth Science Applications?. Surveys in Geophysics, 2016, 37, 453-470.                                                               | 2.1 | 139       |
| 10 | Hydrological Signals Observed by the GRACE Satellites. Surveys in Geophysics, 2008, 29, 319-334.                                                                                                             | 2.1 | 128       |
| 11 | Simulating high-frequency atmosphere-ocean mass variability for dealiasing of satellite gravity observations: AOD1B RL05. Journal of Geophysical Research: Oceans, 2013, 118, 3704-3711.                     | 1.0 | 103       |
| 12 | Estimation of steric sea level variations from combined GRACE and Jason-1 data. Earth and Planetary<br>Science Letters, 2007, 254, 194-202.                                                                  | 1.8 | 102       |
| 13 | The GFZ GRACE RL06 Monthly Gravity Field Time Series: Processing Details and Quality Assessment.<br>Remote Sensing, 2019, 11, 2116.                                                                          | 1.8 | 72        |
| 14 | Combination of temporal gravity variations resulting from superconducting gravimeter (SG)<br>recordings, GRACE satellite observations and global hydrology models. Journal of Geodesy, 2006, 79,<br>573-585. | 1.6 | 64        |
| 15 | Comparing seven candidate mission configurations for temporal gravity field retrieval through full-scale numerical simulation. Journal of Geodesy, 2014, 88, 31-43.                                          | 1.6 | 63        |
| 16 | Status of the GRACE Follow-On Mission. International Association of Geodesy Symposia, 2014, , 117-121.                                                                                                       | 0.2 | 62        |
| 17 | Land water storage contribution to sea level from GRACE geoid data over 2003–2006. Global and Planetary Change, 2008, 60, 381-392.                                                                           | 1.6 | 58        |
| 18 | Daily GRACE gravity field solutions track major flood events in the Ganges–Brahmaputra Delta.<br>Hydrology and Earth System Sciences, 2018, 22, 2867-2880.                                                   | 1.9 | 55        |

FRANK M FLECHTNER

| #  | Article                                                                                                                                                                                       | IF  | CITATIONS |
|----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 19 | EIGEN-6C: A High-Resolution Global Gravity Combination Model Including GOCE Data. Advanced Technologies in Earth Sciences, 2014, , 155-161.                                                   | 0.9 | 55        |
| 20 | Modeling of present-day atmosphere and ocean non-tidal de-aliasing errors for future gravity mission simulations. Journal of Geodesy, 2016, 90, 423-436.                                      | 1.6 | 52        |
| 21 | Advanced technologies for satellite navigation and geodesy. Advances in Space Research, 2019, 64, 1256-1273.                                                                                  | 1.2 | 52        |
| 22 | Seasonal variation of ocean bottom pressure derived from Gravity Recovery and Climate Experiment (GRACE): Local validation and global patterns. Journal of Geophysical Research, 2005, 110, . | 3.3 | 46        |
| 23 | Mass, Volume and Velocity of the Antarctic Ice Sheet: Present-Day Changes and Error Effects. Surveys in Geophysics, 2014, 35, 1481-1505.                                                      | 2.1 | 41        |
| 24 | The Release 04 CHAMP and GRACE EIGEN Gravity Field Models. Advanced Technologies in Earth Sciences, 2010, , 41-58.                                                                            | 0.9 | 35        |
| 25 | Can GPS-Derived Surface Loading Bridge a GRACE Mission Gap?. Surveys in Geophysics, 2014, 35, 1267-1283.                                                                                      | 2.1 | 33        |
| 26 | European Gravity Service for Improved Emergency Management (EGSIEM)—from concept to<br>implementation. Geophysical Journal International, 2019, 218, 1572-1590.                               | 1.0 | 27        |
| 27 | Residual ocean tide signals from satellite altimetry, GRACE gravity fields, and hydrodynamic modelling. Geophysical Journal International, 2009, 178, 1185-1192.                              | 1.0 | 26        |
| 28 | Airborne Gravimetry of GEOHALO Mission: Data Processing and Gravity Field Modeling. Journal of<br>Geophysical Research: Solid Earth, 2017, 122, 10,586.                                       | 1.4 | 23        |
| 29 | GFZ RL05: An Improved Time-Series of Monthly GRACE Gravity Field Solutions. Advanced Technologies in Earth Sciences, 2014, , 29-39.                                                           | 0.9 | 21        |
| 30 | Correction of inconsistencies in ECMWF's operational analysis data during de-aliasing of GRACE gravity models. Geophysical Journal International, 2015, 202, 2150-2158.                       | 1.0 | 20        |
| 31 | The gravity field model IGGT_R1 based on the second invariant of the GOCE gravitational gradient tensor. Journal of Geodesy, 2018, 92, 561-572.                                               | 1.6 | 18        |
| 32 | GNSS navigation and positioning for the GEOHALO experiment in Italy. GPS Solutions, 2016, 20, 215-224.                                                                                        | 2.2 | 17        |
| 33 | Gravitationally Consistent Mean Barystatic Sea Level Rise From Leakageâ€Corrected Monthly GRACE<br>Data. Journal of Geophysical Research: Solid Earth, 2020, 125, e2020JB020923.              | 1.4 | 17        |
| 34 | International Combination Service for Time-Variable Gravity Fields (COST-G). International Association of Geodesy Symposia, 2020, , 57-65.                                                    | 0.2 | 17        |
| 35 | On the impact of local ties on the datum realization of global terrestrial reference frames. Journal of Geodesy, 2019, 93, 655-667.                                                           | 1.6 | 16        |
| 36 | Satellite Gravimetry: A Review of Its Realization. Surveys in Geophysics, 2021, 42, 1029-1074.                                                                                                | 2.1 | 16        |

FRANK M FLECHTNER

| #  | Article                                                                                                                                                                                             | IF  | CITATIONS |
|----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 37 | Shipborne gravimetry in the Baltic Sea: data processing strategies, crucial findings and preliminary geoid determination tests. Journal of Geodesy, 2019, 93, 1059-1071.                            | 1.6 | 15        |
| 38 | Performance Assessment of Multi-GNSS Precise Velocity and Acceleration Determination over Antarctica. Journal of Navigation, 2019, 72, 1-18.                                                        | 1.0 | 14        |
| 39 | De-aliasing of Short-term Atmospheric and Oceanic Mass Variations for GRACE. , 2006, , 83-97.                                                                                                       |     | 12        |
| 40 | What Can be Expected from the GRACE-FO Laser Ranging Interferometer for Earth Science Applications?. Space Sciences Series of ISSI, 2016, , 263-280.                                                | 0.0 | 12        |
| 41 | Comparison of ECMWF analyses with GPS radio occultations from CHAMP. Annales Geophysicae, 2008, 26, 3225-3234.                                                                                      | 0.6 | 11        |
| 42 | GNSS Precise Kinematic Positioning for Multiple Kinematic Stations Based on A Priori Distance<br>Constraints. Sensors, 2016, 16, 470.                                                               | 2.1 | 11        |
| 43 | Technical note: Introduction of a superconducting gravimeter as novel hydrological sensor for the<br>Alpine research catchment Zugspitze. Hydrology and Earth System Sciences, 2021, 25, 5047-5064. | 1.9 | 11        |
| 44 | Non-tidal atmospheric and oceanic mass variations and their impact on GRACE data analysis. Journal of<br>Geodynamics, 2012, 59-60, 9-15.                                                            | 0.7 | 10        |
| 45 | GGOS-SIM: Simulation of the Reference Frame for the Global Geodetic Observing System. International Association of Geodesy Symposia, 2015, , 95-100.                                                | 0.2 | 10        |
| 46 | A Global Terrestrial Reference Frame from simulated VLBI and SLR data in view of GGOS. Journal of Geodesy, 2017, 91, 723-733.                                                                       | 1.6 | 10        |
| 47 | Improved Non-tidal Atmospheric and Oceanic De-aliasing for GRACE and SLR Satellites. Advanced Technologies in Earth Sciences, 2010, , 131-142.                                                      | 0.9 | 10        |
| 48 | Modelling spatial covariances for terrestrial water storage variations verified with synthetic GRACE-FO data. GEM - International Journal on Geomathematics, 2020, 11, 1.                           | 0.7 | 9         |
| 49 | Forward Gravity Modelling to Augment High-Resolution Combined Gravity Field Models. Surveys in<br>Geophysics, 2020, 41, 767-804.                                                                    | 2.1 | 8         |
| 50 | Uncertainties of GRACEâ€Based Terrestrial Water Storage Anomalies for Arbitrary Averaging Regions.<br>Journal of Geophysical Research: Solid Earth, 2022, 127, .                                    | 1.4 | 7         |
| 51 | Satellite dynamics of the CHAMP and GRACE leos as revealed from space- and ground-based tracking.<br>Advances in Space Research, 2003, 31, 1869-1874.                                               | 1.2 | 6         |
| 52 | Improving the Performance of Multi-GNSS (Global Navigation Satellite System) Ambiguity Fixing for<br>Airborne Kinematic Positioning over Antarctica. Remote Sensing, 2019, 11, 992.                 | 1.8 | 6         |
| 53 | Impact of PRARE on ERS-2 POD. Advances in Space Research, 1997, 19, 1645-1648.                                                                                                                      | 1.2 | 5         |
| 54 | Simulation study for the determination of the lunar gravity field from PRARE-L tracking onboard the German LEO mission. Advances in Space Research, 2008, 42, 1405-1413.                            | 1.2 | 5         |

FRANK M FLECHTNER

| #  | ARTICLE                                                                                                                                                   | IF   | CITATIONS |
|----|-----------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 55 | Using real polar ground gravimetry data to solve the GOCE polar gap problem in satellite-only gravity<br>field recovery. Journal of Geodesy, 2020, 94, 1. | 1.6  | 5         |
| 56 | Static and Time-Variable Gravity from GRACE Mission Data. , 2006, , 115-129.                                                                              |      | 5         |
| 57 | Future Gravity Field Satellite Missions. Advanced Technologies in Earth Sciences, 2014, , 165-230.                                                        | 0.9  | 5         |
| 58 | Simulation of VLBI Observations to Determine a Global TRF for GGOS. International Association of Geodesy Symposia, 2016, , 3-9.                           | 0.2  | 4         |
| 59 | First results of comparisons of PRARE TEC with TOPEX measurements and with ionospheric models.<br>Advances in Space Research, 1998, 22, 815-818.          | 1.2  | 3         |
| 60 | Atmospheric Loading and Mass Variation Effects on the SLR-Defined Geocenter. International Association of Geodesy Symposia, 2015, , 227-232.              | 0.2  | 3         |
| 61 | Integrated GNSS Doppler velocity determination for GEOHALO airborne gravimetry. GPS Solutions, 2021, 25, 1.                                               | 2.2  | 3         |
| 62 | Gravity Field Mapping from GRACE: Different Approaches—Same Results?. International Association of<br>Geodesy Symposia, 2015, , 165-175.                  | 0.2  | 2         |
| 63 | Benchmark data for verifying background model implementations in orbit and gravity field determination software. Advances in Geosciences, 0, 55, 1-11.    | 12.0 | 2         |
| 64 | High Frequency Temporal Earth Gravity Variations Detected by GRACE Satellites. , 2006, , 165-174.                                                         |      | 1         |
| 65 | Die Surfer im Erdschwerefeld. Physik in Unserer Zeit, 2013, 44, 286-292.                                                                                  | 0.0  | 0         |
| 66 | Impact of Numerical Weather Models on Gravity Field Analysis. International Association of Geodesy<br>Symposia, 2015, , 355-365.                          | 0.2  | 0         |