
Mauro De Marchis

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3876672/publications.pdf Version: 2024-02-01

MALIPO DE MARCHIS

#	Article	IF	CITATIONS
1	The effect of the slope of irregularly distributed roughness elements on turbulent wall-bounded flows. Journal of Fluid Mechanics, 2008, 613, 385-394.	3.4	159
2	A model of the filling process of an intermittent distribution network. Urban Water Journal, 2010, 7, 321-333.	2.1	67
3	Energy Recovery in Water Distribution Networks. Implementation of Pumps as Turbine in a Dynamic Numerical Model. Procedia Engineering, 2014, 70, 439-448.	1.2	54
4	Analysis of the impact of intermittent distribution by modelling the network-filling process. Journal of Hydroinformatics, 2011, 13, 358-373.	2.4	49
5	Effects of irregular two-dimensional and three-dimensional surface roughness in turbulent channel flows. International Journal of Heat and Fluid Flow, 2012, 36, 7-17.	2.4	49
6	Energy Saving in Water Distribution Network through Pump as Turbine Generators: Economic and Environmental Analysis. Energies, 2016, 9, 877.	3.1	49
7	Effect of the Junction Angle on Turbulent Flow at a Hydraulic Confluence. Water (Switzerland), 2018, 10, 469.	2.7	49
8	A coupled Finite Volume–Smoothed Particle Hydrodynamics method for incompressible flows. Computer Methods in Applied Mechanics and Engineering, 2016, 310, 674-693.	6.6	43
9	Effects of roughness on particle dynamics in turbulent channel flows: a DNS analysis. Journal of Fluid Mechanics, 2014, 739, 465-478.	3.4	41
10	Interaction between turbulent structures and particles in roughened channel. International Journal of Multiphase Flow, 2016, 78, 117-131.	3.4	40
11	Bench scale continuous coagulation-flocculation of saline industrial wastewater contaminated by hydrocarbons. Journal of Water Process Engineering, 2020, 34, 101156.	5.6	40
12	Numerical observations of turbulence structure modification in channel flow over 2D and 3D rough walls. International Journal of Heat and Fluid Flow, 2015, 56, 108-123.	2.4	39
13	The Effect of Damage Functions on Urban Flood Damage Appraisal. Procedia Engineering, 2014, 70, 1251-1260.	1.2	35
14	Large eddy simulations of roughened channel flows: Estimation of the energy losses using the slope of the roughness. Computers and Fluids, 2016, 140, 148-157.	2.5	35
15	Experimental and Numerical Study on the Flow Field and Friction Factor in a Pressurized Corrugated Pipe. Journal of Hydraulic Engineering, 2015, 141, .	1.5	31
16	Implementation of pressure reduction valves in a dynamic water distribution numerical model to control the inequality in water supply. Journal of Hydroinformatics, 2014, 16, 207-217.	2.4	30
17	Experimental Evidence of Leaks in Elastic Pipes. Water Resources Management, 2016, 30, 2005-2019.	3.9	30
18	Turbulence structures over irregular rough surfaces. Journal of Turbulence, 2010, 11, N3.	1.4	29

MAURO DE MARCHIS

#	Article	IF	CITATIONS
19	Pump as turbine implementation in a dynamic numerical model: cost analysis for energy recovery in water distribution network. Journal of Hydroinformatics, 2015, 17, 347-360.	2.4	29
20	Modelling of E. coli distribution in coastal areas subjected to combined sewer overflows. Water Science and Technology, 2013, 68, 1123-1136.	2.5	28
21	Pumps as turbines (PATs) in water distribution networks affected by intermittent service. Journal of Hydroinformatics, 2014, 16, 259-271.	2.4	27
22	Three-dimensional numerical simulations on wind- and tide-induced currents: The case of Augusta Harbour (Italy). Computers and Geosciences, 2014, 72, 65-75.	4.2	27
23	Statistics of inertial particle deviation from fluid particle trajectories in horizontal rough wall turbulent channel flow. International Journal of Heat and Fluid Flow, 2016, 60, 1-11.	2.4	26
24	The effect of geometrical parameters on the discharge capacity of meandering compound channels. Advances in Water Resources, 2008, 31, 1662-1673.	3.8	24
25	Leakage Estimation in Water Distribution Network: Effect of the Shape and Size Cracks. Water Resources Management, 2019, 33, 1167-1183.	3.9	24
26	Large Eddy Simulations of Rough Turbulent Channel Flows Bounded by Irregular Roughness: Advances Toward a Universal Roughness Correlation. Flow, Turbulence and Combustion, 2020, 105, 627-648.	2.6	24
27	Wind- and tide-induced currents in the Stagnone lagoon (Sicily). Environmental Fluid Mechanics, 2012, 12, 81-100.	1.6	22
28	PANORMUS-SPH. A new Smoothed Particle Hydrodynamics solver for incompressible flows. Computers and Fluids, 2015, 106, 185-195.	2.5	19
29	Turbulence modulation by micro-particles in smooth and rough channels. Physics of Fluids, 2016, 28, 115101.	4.0	18
30	A mathematical model to evaluate apparent losses due to meter under-registration in intermittent water distribution networks. Water Science and Technology: Water Supply, 2013, 13, 914-923.	2.1	15
31	Pressure-Discharge Law of Local Tanks Connected to a Water Distribution Network: Experimental and Mathematical Results. Water (Switzerland), 2015, 7, 4701-4723.	2.7	14
32	Characterization and Treatment Proposals of Shipboard Slop Wastewater Contaminated by Hydrocarbons. Water (Switzerland), 2017, 9, 581.	2.7	13
33	Large eddy simulation of inertial particles dispersion in a turbulent gas-particle channel flow bounded by rough walls. Acta Mechanica, 2020, 231, 3925-3946.	2.1	13
34	Large eddy simulations on the effect of the irregular roughness shape on turbulent channel flows. International Journal of Heat and Fluid Flow, 2019, 80, 108494.	2.4	12
35	Solid sediment transport in turbulent channel flow over irregular rough boundaries. International Journal of Heat and Fluid Flow, 2017, 65, 114-126.	2.4	11
36	Effect of the contact tank geometry on disinfection efficiency. Journal of Water Process Engineering, 2021, 41, 102035.	5.6	10

MAURO DE MARCHIS

#	Article	IF	CITATIONS
37	Experimental Investigation for Local Tank Inflow Model. Procedia Engineering, 2014, 89, 656-663.	1.2	8
38	A multi-domain approach for smoothed particle hydrodynamics simulations of highly complex flows. Computer Methods in Applied Mechanics and Engineering, 2018, 340, 956-977.	6.6	8
39	Perforated Baffles for the Optimization of Disinfection Treatment. Water (Switzerland), 2020, 12, 3462.	2.7	8
40	Effect of roughness on elongated particles in turbulent channel flow. International Journal of Multiphase Flow, 2022, 152, 104065.	3.4	7
41	Definition of Water Meter Substitution Plans based on a Composite Indicator. Procedia Engineering, 2014, 70, 1369-1377.	1.2	5
42	Experimental Evidence of the Discharge Law in Private Tanks Connected to Water Distribution Networks. Procedia Engineering, 2016, 154, 115-122.	1.2	4
43	Experimental analysis of pressure-discharge relationship in a private water supply tank. Journal of Hydroinformatics, 2018, 20, 608-621.	2.4	4
44	Optimization of the design of labyrinth emitter for agriculture irrigation using computational fluid dynamic analysis. AIP Conference Proceedings, 2018, , .	0.4	4
45	A Pressure Monitoring System for Water Distribution Networks Based on Arduino Microcontroller. Water (Switzerland), 2021, 13, 2321.	2.7	3
46	Large Eddy Simulation of Contact Tanks for Disinfection in Drinking Water Treatment. ERCOFTAC Series, 2020, , 503-508.	0.1	2
47	Optimization of management choices of clariflocculation process by means of qualitative multi-criteria analysis. Water Science and Technology, 2020, 81, 1011-1028.	2.5	2
48	Concept of a New Pluviometer for Metering Rainfall Erosivity. Advanced Materials Research, 2012, 452-453, 316-320.	0.3	1
49	On the influence of wall roughness in particle-laden flows. AIP Conference Proceedings, 2015, , .	0.4	1
50	Preface of the "Symposium on Advanced Engineering Systems and Computer Applications: Theory and Practice― AIP Conference Proceedings, 2016, , .	0.4	1
51	Preface of the Symposium "Advanced Engineering Systems and Computer Applications: Theory and Practice― AIP Conference Proceedings, 2017, , .	0.4	1
52	Editorial: Water and environmental challenges in a changing world: the perspective of the 13th International Conference on Hydroinformatics HIC 2018. Journal of Hydroinformatics, 2020, 22, 1-4.	2.4	1
53	Large Eddy Simulations of Rough Turbulent Channel Flows Bounded by Irregular Roughness: The Role of Geometrical Parameters. ERCOFTAC Series, 2020, , 25-31.	0.1	1
54	On the estimation of the roughness function using a logarithmic scaling of the effective slope. AIP Conference Proceedings, 2015, , .	0.4	0

MAURO DE MARCHIS

#	Article	IF	CITATIONS
55	Particle-Laden Turbulent Channel Flow with Wall-Roughness. ERCOFTAC Series, 2015, , 655-661.	0.1	Ο
56	LES of turbulent channel flow with realistic rough walls. AIP Conference Proceedings, 2015, , .	0.4	0
57	Preface of the symposium "Advanced Engineering Systems and Computer Applications: Theory and Practice― AIP Conference Proceedings, 2018, , .	0.4	0
58	Preface of the Symposium "Advanced Engineering Systems and Computer Applications: Theory and Practice― AIP Conference Proceedings, 2021, , .	0.4	0
59	Effect of the contact tank geometry on disinfection efficiency. AIP Conference Proceedings, 2021, , .	0.4	0
60	Numerical simulation for water loss estimation in water supply pipes: Discharge estimation and deformation analysis. AIP Conference Proceedings, 2021, , .	0.4	0