M Shahiduzzaman

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3876415/publications.pdf

Version: 2024-02-01

279487 395343 1,333 69 23 33 citations h-index g-index papers 69 69 69 1215 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Use of n-type amorphous silicon films as an electron transport layer in the perovskite solar cells. Japanese Journal of Applied Physics, 2022, 61, SB1012.	0.8	O
2	Growth and reaction mechanism of solution-processed Cu2ZnSnSe4 thin films for realising efficient photovoltaic applications. Journal of Alloys and Compounds, 2022, 900, 163457.	2.8	6
3	Reproducible perovskite solar cells using a simple solvent-mediated solâ^gel synthesized NiO _x hole transport layer. Applied Physics Express, 2022, 15, 015504.	1.1	6
4	Electro-spray deposited TiO2 bilayer films and their recyclable photocatalytic self-cleaning strategy. Scientific Reports, 2022, 12, 1582.	1.6	3
5	Investigation of Degradation Mechanism of Y6â€Based Inverted Organic Solar Cells and Their Utilization in Durable Nearâ€Infrared Photodetection. Macromolecular Rapid Communications, 2022, 43, e2100718.	2.0	7
6	Nanophotonic-structured front contact for high-performance perovskite solar cells. Science China Materials, 2022, 65, 1727-1740.	3 . 5	5
7	Perovskite/perovskite planar tandem solar cells: A comprehensive guideline for reaching energy conversion efficiency beyond 30%. Nano Energy, 2021, 79, 105400.	8.2	69
8	Spray Pyrolyzed TiO2 Embedded Multi-Layer Front Contact Design for High-Efficiency Perovskite Solar Cells. Nano-Micro Letters, 2021, 13, 36.	14.4	50
9	Low-cost molecular glass hole transport material for perovskite solar cells. Japanese Journal of Applied Physics, 2021, 60, SBBF12.	0.8	2
10	Ionic Liquid-Assisted MAPbI ₃ Nanoparticle-Seeded Growth for Efficient and Stable Perovskite Solar Cells. ACS Applied Materials & Solar Cells. Solar Cells. ACS Applied Materials & Solar Cells. Solar	4.0	47
11	Ionic liquid infused starch-cellulose derivative based quasi-solid dye-sensitized solar cell: exploiting the rheological properties of natural polymers. Cellulose, 2021, 28, 5545.	2.4	9
12	Selective Extraction of Nonfullerene Acceptors from Bulk-Heterojunction Layer in Organic Solar Cells for Detailed Analysis of Microstructure. Materials, 2021, 14, 2107.	1.3	3
13	Defect Study and Modelling of SnX3-Based Perovskite Solar Cells with SCAPS-1D. Nanomaterials, 2021, 11, 1218.	1.9	81
14	The benefits of ionic liquids for the fabrication of efficient and stable perovskite photovoltaics. Chemical Engineering Journal, 2021, 411, 128461.	6.6	70
15	Study on Properties of Low-Temperature-Prepared Zinc Oxide-Based Inverted Organic Solar Cells and Improvement of their Photodurability. ACS Applied Energy Materials, 2021, 4, 6385-6390.	2.5	10
16	Impact of Ar Flow Rates on Micro-Structural Properties of WS2 Thin Film by RF Magnetron Sputtering. Nanomaterials, 2021, 11, 1635.	1.9	9
17	Effects of oxygen concentration variation on the structural and optical properties of reactive sputtered WOx thin film. Solar Energy, 2021, 222, 202-211.	2.9	26
18	Efficiency enhancement of CIGS solar cell by cubic silicon carbide as prospective buffer layer. Solar Energy, 2021, 224, 271-278.	2.9	28

#	Article	lF	CITATIONS
19	Double-layer CsI intercalation into an MAPbI3 framework for efficient and stable perovskite solar cells. Nano Energy, 2021, 86, 106135.	8.2	33
20	Improved Nanophotonic Front Contact Design for Highâ€Performance Perovskite Singleâ€Junction and Perovskite/Perovskite Tandem Solar Cells. Solar Rrl, 2021, 5, 2100509.	3.1	23
21	Performance analysis of tungsten disulfide (WS2) as an alternative buffer layer for CdTe solar cell through numerical modeling. Optical Materials, 2021, 120, 111296.	1.7	24
22	Near field control for enhanced photovoltaic performance and photostability in perovskite solar cells. Nano Energy, 2021, 89, 106388.	8.2	25
23	Low-temperature treated anatase TiO2 nanophotonic-structured contact design for efficient triple-cation perovskite solar cells. Chemical Engineering Journal, 2021, 426, 131831.	6.6	22
24	Study on photo-degradation of inverted organic solar cells caused by generation of potential barrier between PEDOT:PSS and PBDB-Ts. Sustainable Energy and Fuels, 2021, 5, 3092-3096.	2.5	6
25	It is an Allâ€Rounder! On the Development of Metal Halide Perovskiteâ€Based Fluorescent Sensors and Radiation Detectors. Advanced Optical Materials, 2021, 9, 2101276.	3.6	18
26	Muntingia calabura Leaves Mediated Green Synthesis of CuO Nanorods: Exploiting Phytochemicals for Unique Morphology. Materials, 2021, 14, 6379.	1.3	19
27	Enhancing spectral response towards high-performance dye-sensitised solar cells by multiple dye approach: A comprehensive review. Applied Materials Today, 2021, 25, 101204.	2.3	11
28	Design and Modelling of Eco-Friendly CH3NH3SnI3-Based Perovskite Solar Cells with Suitable Transport Layers. Energies, 2021, 14, 7200.	1.6	25
29	Paste Aging Spontaneously Tunes TiO ₂ Nanoparticles into Reproducible Electrosprayed Photoelectrodes. ACS Applied Materials & Samp; Interfaces, 2021, 13, 53758-53766.	4.0	3
30	Synthesis of brookite-type TiO ₂ nanoparticles by emulsion-assisted hydrothermal method using titanium glycolate complex. Journal of the Ceramic Society of Japan, 2021, 129, 720-724.	0.5	2
31	Local Cross-Coupling Activity of Azide-Hexa(ethylene glycol)-Terminated Self-Assembled Monolayers Investigated by Atomic Force Microscopy. Langmuir, 2021, 37, 14688-14696.	1.6	3
32	Effect of Selective Lateral Chromium Doping by RF Magnetron Sputtering on the Structural, and Opto-Electrical Properties of Nickel Oxide. Applied Sciences (Switzerland), 2021, 11, 11546.	1.3	7
33	Substrate-driven switchable molecular orientation in bulk heterojunction films identified using infrared reflection absorption spectroscopy. Molecular Systems Design and Engineering, 2020, 5, 559-564.	1.7	5
34	Electrical and Optical Properties of Nickelâ€Oxide Films for Efficient Perovskite Solar Cells. Small Methods, 2020, 4, 2000454.	4.6	37
35	Low-Temperature Processed TiOx Electron Transport Layer for Efficient Planar Perovskite Solar Cells. Nanomaterials, 2020, 10, 1676.	1.9	13
36	Switchable Crystal Phase and Orientation of Evaporated Zinc Phthalocyanine Films for Efficient Organic Photovoltaics. Journal of Physical Chemistry C, 2020, 124, 21338-21345.	1.5	7

#	Article	IF	Citations
37	Naphthalene diimide-incorporated helical thienoacene: a helical molecule with high electron mobility, good solubility, and thermally stable solid phase. Chemical Communications, 2020, 56, 12343-12346.	2.2	6
38	Metal Oxide Compact Electron Transport Layer Modification for Efficient and Stable Perovskite Solar Cells. Materials, 2020, 13, 2207.	1.3	42
39	Platinum leaf counter electrodes for dye-sensitized solar cells. Japanese Journal of Applied Physics, 2020, 59, SDDC07.	0.8	3
40	A single-phase brookite TiO ₂ nanoparticle bridge enhances the stability of perovskite solar cells. Sustainable Energy and Fuels, 2020, 4, 2009-2017.	2.5	25
41	Optoelectronic properties of electron beam-deposited NiOx thin films for solar cell application. Results in Physics, 2020, 17, 103122.	2.0	26
42	Air-stable perovskite photovoltaic cells with low temperature deposited NiOx as an efficient hole-transporting material. Optical Materials Express, 2020, 10, 1801.	1.6	19
43	Influence of the TiO2 Compact Electron Transport Layer on the Planar Perovskite Solar Cell Performance. , 2020, , .		0
44	Thermal Control of PbI ₂ Film Growth for Two-Step Planar Perovskite Solar Cells. Crystal Growth and Design, 2019, 19, 5320-5325.	1.4	18
45	Thin film deposition method for ZnO nanosheets using low-temperature microwave-excited atmospheric pressure plasma jet. Thin Solid Films, 2019, 674, 58-63.	0.8	4
46	Oblique Electrostatic Inkjet-Deposited TiO2 Electron Transport Layers for Efficient Planar Perovskite Solar Cells. Scientific Reports, 2019, 9, 19494.	1.6	29
47	Efficient Planar Perovskite Solar Cells with Entire Low-Temperature Processes via Brookite TiO2 Nanoparticle Electron Transport Layer., 2019,,.		0
48	Platinum counter electrodes for dye-sensitized solar cells prepared by one-step dipping process. Japanese Journal of Applied Physics, 2019, 58, 124001.	0.8	9
49	Low-Temperature-Processed Brookite-Based TiO ₂ Heterophase Junction Enhances Performance of Planar Perovskite Solar Cells. Nano Letters, 2019, 19, 598-604.	4.5	61
50	Influence of coating steps of perovskite on low-temperature amorphous compact TiO <i> _x </i> upon the morphology, crystallinity, and photovoltaic property correlation in planar perovskite solar cells. Japanese Journal of Applied Physics, 2018, 57, 03EJ06.	0.8	8
51	Interface engineering of compact-TiOx in planar perovskite solar cells using low-temperature processable high-mobility fullerene derivative. Solar Energy Materials and Solar Cells, 2018, 178, 1-7.	3.0	29
52	Highly Efficient Planar Perovskite Solar Cells Exploiting a Compact TiO <inf>2</inf> /Anatase TiO <inf>2</inf> Single Crystalline Nanoparticles Electron Transport Bilayer. , 2018, , .		0
53	Molecular orientation control of semiconducting molecules using a metal layer formed by wet processing. Organic Electronics, 2018, 63, 47-51.	1.4	11
54	Identifying Molecular Orientation in a Bulk Heterojunction Film by Infrared Reflection Absorption Spectroscopy. ACS Omega, 2018, 3, 5678-5684.	1.6	12

#	Article	IF	CITATIONS
55	Compact TiO ₂ /Anatase TiO ₂ Single-Crystalline Nanoparticle Electron-Transport Bilayer for Efficient Planar Perovskite Solar Cells. ACS Sustainable Chemistry and Engineering, 2018, 6, 12070-12078.	3.2	39
56	Planar heterojunction perovskite solar cells fabricated by wet process., 2017,,.		0
57	Viscosity effect of ionic liquid-assisted controlled growth of CH3NH3PbI3 nanoparticle-based planar perovskite solar cells. Organic Electronics, 2017, 48, 147-153.	1.4	30
58	Annealing effects on CsPbl ₃ -based planar heterojunction perovskite solar cells formed by vacuum deposition method. Japanese Journal of Applied Physics, 2017, 56, 04CS11.	0.8	35
59	Sexithiophene-Based Photovoltaic Cells with High Light Absorption Coefficient via Crystalline Polymorph Control. Journal of Physical Chemistry C, 2017, 121, 19699-19704.	1.5	16
60	Improved Reproducibility and Intercalation Control of Efficient Planar Inorganic Perovskite Solar Cells by Simple Alternate Vacuum Deposition of Pbl ₂ and Csl. ACS Omega, 2017, 2, 4464-4469.	1.6	49
61	Interfacial modification of the electron collecting layer of low-temperature solution-processed organometallic halide photovoltaic cells using an amorphous perylenediimide. Solar Energy Materials and Solar Cells, 2017, 160, 294-300.	3.0	25
62	Degradation mechanism for planar heterojunction perovskite solar cells. Japanese Journal of Applied Physics, 2016, 55, 04ES07.	0.8	10
63	Interpenetrating heterojunction photovoltaic cells based on C60 nano-crystallized thin films. Organic Electronics, 2016, 38, 107-114.	1.4	4
64	Shape-controlled CH ₃ NH ₃ Pbl ₃ nanoparticles for planar heterojunction perovskite solar cells. Japanese Journal of Applied Physics, 2016, 55, 02BF05.	0.8	11
65	Planar heterojunction type perovskite solar cells based on TiOxcompact layer fabricated by chemical bath deposition. , 2016 , , .		4
66	Enhanced Photovoltaic Performance of Perovskite Solar Cells via Modification of Surface Characteristics Using a Fullerene Interlayer. Chemistry Letters, 2015, 44, 1735-1737.	0.7	28
67	lonic liquid-assisted growth of methylammonium lead iodide spherical nanoparticles by a simple spin-coating method and photovoltaic properties of perovskite solar cells. RSC Advances, 2015, 5, 77495-77500.	1.7	60
68	Chemical Synthesis of Binary Solid Solution Bismuth–Antimony Nanoparticles with Control of Composition and Morphology. Chemistry Letters, 2014, 43, 615-617.	0.7	2
69	Dopant-Free Mexylaminotriazine Molecular Glass Hole Transport Layer for Perovskite Solar Cells. ACS Applied Energy Materials, 0, , .	2.5	4