Carol Miller

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3875823/publications.pdf

Version: 2024-02-01

55	3,905	35	51
papers	citations	h-index	g-index
63	63 docs citations	63	3142
all docs		times ranked	citing authors

#	Article	IF	CITATIONS
1	How do plant communities differ between fire refugia and fireâ€generated earlyâ€seral vegetation?. Journal of Vegetation Science, 2020, 31, 26-39.	2.2	21
2	Commentary on the article "Burn probability simulation and subsequent wildland fire activity in Alberta, Canada – Implications for risk assessment and strategic planning―by J.L. Beverly and N. McLoughlin. Forest Ecology and Management, 2020, 460, 117698.	3.2	4
3	Landscape Fire Ecology. , 2020, , 738-743.		O
4	Rethinking resilience to wildfire. Nature Sustainability, 2019, 2, 797-804.	23.7	174
5	Contrasting human influences and macro-environmental factors on fire activity inside and outside protected areas of North America. Environmental Research Letters, 2019, 14, 064007.	5.2	30
6	Climate change likely to reshape vegetation in North America's largest protected areas. Conservation Science and Practice, 2019, 1, e50.	2.0	31
7	Contributions of fire refugia to resilient ponderosa pine and dry mixedâ€conifer forest landscapes. Ecosphere, 2019, 10, e02809.	2.2	49
8	Integrating Subjective and Objective Dimensions of Resilience in Fire-Prone Landscapes. BioScience, 2019, 69, 379-388.	4.9	40
9	Living on the edge: trailing edge forests at risk of fireâ€facilitated conversion to nonâ€forest. Ecosphere, 2019, 10, e02651.	2.2	73
10	Influence of fire refugia spatial pattern on post-fire forest recovery in Oregon's Blue Mountains. Landscape Ecology, 2019, 34, 771-792.	4.2	37
11	Applications of simulation-based burn probability modelling: a review. International Journal of Wildland Fire, 2019, 28, 913.	2.4	56
12	Landscape Fire Ecology. , 2019, , 1-6.		0
13	Fineâ€scale spatial climate variation and drought mediate the likelihood of reburning. Ecological Applications, 2018, 28, 573-586.	3.8	32
14	Analogâ€based fire regime and vegetation shifts in mountainous regions of the western US. Ecography, 2018, 41, 910-921.	4.5	39
15	A spatial evaluation of global wildfire-water risks to human and natural systems. Science of the Total Environment, 2018, 610-611, 1193-1206.	8.0	67
16	Potential relocation of climatic environments suggests high rates of climate displacement within the North American protection network. Global Change Biology, 2017, 23, 3219-3230.	9.5	48
17	Characterizing Spatial Neighborhoods of Refugia Following Large Fires in Northern New Mexico USA. Land, 2017, 6, 19.	2.9	18
18	A Global Index for Mapping the Exposure of Water Resources to Wildfire. Forests, 2016, 7, 22.	2.1	29

#	Article	IF	CITATIONS
19	Beyond Fuel Treatment Effectiveness: Characterizing Interactions between Fire and Treatments in the US. Forests, 2016, 7, 237.	2.1	56
20	Using Risk Analysis to Reveal Opportunities for the Management of Unplanned Ignitions in Wilderness. Journal of Forestry, 2016, 114, 610-618.	1.0	16
21	Weather, fuels, and topography impede wildland fire spread in western US landscapes. Forest Ecology and Management, 2016, 380, 59-69.	3.2	80
22	Progress in Wilderness Fire Science: Embracing Complexity. Journal of Forestry, 2016, 114, 373-383.	1.0	21
23	The spatially varying influence of humans on fire probability in North America. Environmental Research Letters, 2016, 11, 075005.	5.2	116
24	Topographic and fire weather controls of fire refugia in forested ecosystems of northwestern North America. Ecosphere, 2016, 7, e01632.	2.2	103
25	How will climate change affect wildland fire severity in the western US?. Environmental Research Letters, 2016, 11, 035002.	5.2	111
26	Wildland fire limits subsequent fire occurrence. International Journal of Wildland Fire, 2016, 25, 182.	2.4	73
27	Restoring fire-prone Inland Pacific landscapes: seven core principles. Landscape Ecology, 2015, 30, 1805-1835.	4.2	224
28	The climate space of fire regimes in northâ€western North America. Journal of Biogeography, 2015, 42, 1736-1749.	3.0	59
29	Wildland fire deficit and surplus in the western United States, 1984–2012. Ecosphere, 2015, 6, 1-13.	2.2	114
30	Representing climate, disturbance, and vegetation interactions in landscape models. Ecological Modelling, 2015, 309-310, 33-47.	2.5	83
31	Wildland fire as a selfâ€regulating mechanism: the role of previous burns and weather in limiting fire progression. Ecological Applications, 2015, 25, 1478-1492.	3.8	178
32	Voices from the Field: Wildland Fire Managers and High-Reliability Organizing Mindfulness. Society and Natural Resources, 2015, 28, 825-838.	1.9	7
33	A New Metric for Quantifying Burn Severity: The Relativized Burn Ratio. Remote Sensing, 2014, 6, 1827-1844.	4.0	250
34	Is U.S. climatic diversity well represented within the existing federal protection network?. Ecological Applications, 2014, 24, 1898-1907.	3.8	14
35	Previous Fires Moderate Burn Severity of Subsequent Wildland Fires in Two Large Western US Wilderness Areas. Ecosystems, 2014, 17, 29-42.	3.4	157
36	Fire Activity and Severity in the Western US Vary along Proxy Gradients Representing Fuel Amount and Fuel Moisture. PLoS ONE, 2014, 9, e99699.	2.5	75

#	Article	IF	CITATIONS
37	Wilderness shapes contemporary fire size distributions across landscapes of the western United States. Ecosphere, 2013, 4, 1-20.	2.2	26
38	A review of recent advances in risk analysis for wildfire management. International Journal of Wildland Fire, 2013, 22, 1.	2.4	197
39	Spatial bottomâ€up controls on fire likelihood vary across western North America. Ecosphere, 2012, 3, 1-20.	2.2	72
40	Quantifying the Threat of Unsuppressed Wildfires Reaching the Adjacent Wildland-Urban Interface on the Bridger-Teton National Forest, Wyoming, USA. Fire Ecology, 2012, 8, 125-142.	3.0	37
41	Multi-scale evaluation of the environmental controls on burn probability in a southern Sierra Nevada landscape. International Journal of Wildland Fire, 2011, 20, 815.	2.4	42
42	Contributions of Ignitions, Fuels, and Weather to the Spatial Patterns of Burn Probability of a Boreal Landscape. Ecosystems, 2011, 14, 1141-1155.	3.4	72
43	Toward a Theory of Landscape Fire. Ecological Studies, 2011, , 3-25.	1.2	28
44	Wilderness Fire Management in a Changing Environment. Ecological Studies, 2011, , 269-294.	1.2	9
45	Use of artificial landscapes to isolate controls on burn probability. Landscape Ecology, 2010, 25, 79-93.	4.2	49
46	Simulation of the Consequences of Different Fire Regimes to Support Wildland Fire Use Decisions. Fire Ecology, 2007, 3, 83-102.	3.0	13
47	Cross-Scale Analysis of Fire Regimes. Ecosystems, 2007, 10, 809-823.	3.4	185
48	Simulation of Effects of Climatic Change on Fire Regimes. , 2003, , 69-94.		3
49	Brain Clearance of Alzheimer's Amyloid- \hat{l}^2 40 in the Squirrel Monkey: A SPECT Study in a Primate Model of Cerebral Amyloid Angiopathy. Journal of Drug Targeting, 2002, 10, 359-368.	4.4	89
50	Connectivity of forest fuels and surface fire regimes. Landscape Ecology, 2000, 15, 145-154.	4.2	148
51	Forest gradient response in Sierran landscapes: the physical template. Landscape Ecology, 2000, 15, 603-620.	4.2	131
52	MODELING THE EFFECTS OF FIRE MANAGEMENT ALTERNATIVES ON SIERRA NEVADA MIXED-CONIFER FORESTS. , 2000, 10, 85-94.		84
53	Interactions between forest heterogeneity and surface fire regimes in the southern Sierra Nevada. Canadian Journal of Forest Research, 1999, 29, 202-212.	1.7	53
54	Forest Pattern, Fire, and Climatic Change in the Sierra Nevada. Ecosystems, 1999, 2, 76-87.	3.4	64

#	Article	lF	CITATIONS
55	A model of surface fire, climate and forest pattern in the Sierra Nevada, California. Ecological Modelling, 1999, 114, 113-135.	2.5	95