Zhaoling Li

List of Publications by Year in Descending Order

Source: https://exaly.com/author-pdf/3875565/zhaoling-li-publications-by-year.pdf

Version: 2024-04-25

This document has been generated based on the publications and citations recorded by exaly.com. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

67
papers

4,482
citations

h-index

66
g-index

70
ext. papers

5,455
ext. citations

10.6
avg, IF

L-index

#	Paper	IF	Citations
67	Air-permeable electrode for highly sensitive and noninvasive glucose monitoring enabled by graphene fiber fabrics. <i>Nano Energy</i> , 2022 , 93, 106904	17.1	5
66	Nanocrystalline cellulose extracted from bast fibers: Preparation, characterization, and application <i>Carbohydrate Polymers</i> , 2022 , 290, 119462	10.3	4
65	Anthraquinone-assisted deep eutectic solvent degumming of ramie fibers: Evaluation of fiber properties and degumming performance. <i>Industrial Crops and Products</i> , 2022 , 185, 115115	5.9	1
64	Flexible High-Resolution Triboelectric Sensor Array Based on Patterned Laser-Induced Graphene for Self-Powered Real-Time Tactile Sensing. <i>Advanced Functional Materials</i> , 2021 , 31, 2100709	15.6	47
63	Conductance-stable liquid metal sheath-core microfibers for stretchy smart fabrics and self-powered sensing. <i>Science Advances</i> , 2021 , 7,	14.3	40
62	Bioinspired transparent and antibacterial electronic skin for sensitive tactile sensing. <i>Nano Energy</i> , 2021 , 81, 105669	17.1	37
61	Highly flexible, efficient, and wearable infrared radiation heating carbon fabric. <i>Chemical Engineering Journal</i> , 2021 , 417, 128114	14.7	13
60	Wearable biosensor for sensitive detection of uric acid in artificial sweat enabled by a fiber structured sensing interface. <i>Nano Energy</i> , 2021 , 85, 106031	17.1	24
59	High-efficiency and recyclable ramie cellulose fiber degumming enabled by deep eutectic solvent. <i>Industrial Crops and Products</i> , 2021 , 171, 113879	5.9	10
58	A dual-mode electronic skin textile for pressure and temperature sensing. <i>Chemical Engineering Journal</i> , 2021 , 425, 130599	14.7	16
57	Highly Flexible, Efficient, and Sandwich-Structured Infrared Radiation Heating Fabric. <i>ACS Applied Materials & Ma</i>	9.5	27
56	A hybrid comprised of porous carbon nanofibers and rGO for efficient electromagnetic wave absorption. <i>Carbon</i> , 2020 , 157, 703-713	10.4	60
55	Highly shape adaptive fiber based electronic skin for sensitive joint motion monitoring and tactile sensing. <i>Nano Energy</i> , 2020 , 69, 104429	17.1	87
54	Hierarchically Rough Structured and Self-Powered Pressure Sensor Textile for Motion Sensing and Pulse Monitoring. <i>ACS Applied Materials & amp; Interfaces</i> , 2020 , 12, 1597-1605	9.5	68
53	All-Fiber Structured Electronic Skin with High Elasticity and Breathability. <i>Advanced Functional Materials</i> , 2020 , 30, 1908411	15.6	99
52	Microwave-assisted fabrication of sea cucumber-like hollow structured composite for high-performance electromagnetic wave absorption. <i>Chemical Engineering Journal</i> , 2020 , 392, 123646	14.7	28
51	Reaction environment self-modification on low-coordination Ni2+ octahedra atomic interface for superior electrocatalytic overall water splitting. <i>Nano Research</i> , 2020 , 13, 3068-3074	10	20

(2017-2020)

50	Energy autonomous hybrid electronic skin with multi-modal sensing capabilities. <i>Nano Energy</i> , 2020 , 78, 105208	17.1	42	
49	Highly Wearable, Breathable, and Washable Sensing Textile for Human Motion and Pulse Monitoring. <i>ACS Applied Materials & Description</i> (12, 19965-19973)	9.5	67	
48	Facile Strategy for Fabrication of Flexible, Breathable, and Washable Piezoelectric Sensors via Welding of Nanofibers with Multiwalled Carbon Nanotubes (MWCNTs). <i>ACS Applied Materials & Mamp; Interfaces</i> , 2019 , 11, 38023-38030	9.5	35	
47	Highly flexible, breathable, tailorable and washable power generation fabrics for wearable electronics. <i>Nano Energy</i> , 2019 , 58, 750-758	17.1	112	
46	Seaweed-Derived Electrospun Nanofibrous Membranes for Ultrahigh Protein Adsorption. <i>Advanced Functional Materials</i> , 2019 , 29, 1905610	15.6	20	
45	Morphology and Structure of Electrospun Nanofibrous Materials 2019 , 112-178		1	
44	Extraction of Ramie Fiber in Alkali Hydrogen Peroxide System Supported by Controlled-release Alkali Source. <i>Journal of Visualized Experiments</i> , 2018 ,	1.6	1	
43	Effect of Pre-carbonization Temperature on the Properties of Plasticized Spinning Polyacrylonitrile Fibers. <i>Fibers and Polymers</i> , 2018 , 19, 692-696	2	5	
42	Solar thermal energy harvesting properties of spacer fabric composite used for transparent insulation materials. <i>Solar Energy Materials and Solar Cells</i> , 2018 , 174, 140-145	6.4	25	
41	CoO/carbon composite nanofibrous membrane enabled high-efficiency electromagnetic wave absorption. <i>Scientific Reports</i> , 2018 , 8, 12402	4.9	40	
40	Energy harvesting from human motions for wearable applications. <i>Industria Textila</i> , 2018 , 69, 390-393	0.5	3	
39	Light and Flexible Composite Nanofibrous Membranes for High-Efficiency Electromagnetic Absorption in a Broad Frequency. <i>ACS Applied Materials & Discrete Amp; Interfaces</i> , 2018 , 10, 44561-44569	9.5	34	
38	Rationally designed carbon coated ZnSnS3 nano cubes as high-performance anode for advanced sodium-ion batteries. <i>Electrochimica Acta</i> , 2018 , 292, 646-654	6.7	15	
37	Nanofibrous membrane constructed magnetic materials for high-efficiency electromagnetic wave absorption. <i>Composites Part B: Engineering</i> , 2018 , 155, 397-404	10	27	
36	Multilayered fiber-based triboelectric nanogenerator with high performance for biomechanical energy harvesting. <i>Nano Energy</i> , 2018 , 53, 726-733	17.1	92	
35	Mathematical and experimental analysis on solar thermal energy harvesting performance of the textile-based solar thermal energy collector. <i>Renewable Energy</i> , 2018 , 129, 553-560	8.1	24	
34	Tailoring Mechanically Robust Poly(m-phenylene isophthalamide) Nanofiber/nets for Ultrathin High-Efficiency Air Filter. <i>Scientific Reports</i> , 2017 , 7, 40550	4.9	76	
33	Nanofibrous membrane constructed wearable triboelectric nanogenerator for high performance biomechanical energy harvesting. <i>Nano Energy</i> , 2017 , 36, 341-348	17.1	134	

32	Treatment of ramie fiber with different techniques: the influence of diammonium phosphate on interfacial adhesion properties of ramie fiber-reinforced polylactic acid composite. <i>Iranian Polymer Journal (English Edition)</i> , 2017 , 26, 341-354	2.3	17
31	Superhydrophilic and underwater superoleophobic nanofibrous membrane with hierarchical structured skin for effective oil-in-water emulsion separation. <i>Journal of Materials Chemistry A</i> , 2017 , 5, 497-502	13	253
30	Optimization design of a flexible absorption device for solar energy application. <i>E-Polymers</i> , 2017 , 17, 227-234	2.7	6
29	Analysis of Structural Changes in Jute Fibers after Peracetic Acid Treatment. <i>Journal of Engineered Fibers and Fabrics</i> , 2017 , 12, 155892501701200	0.9	10
28	Humidity-resisting triboelectric nanogenerator for high performance biomechanical energy harvesting. <i>Nano Energy</i> , 2017 , 40, 282-288	17.1	100
27	Sustained-release alkali source used in the oxidation degumming of ramie. <i>Textile Reseach Journal</i> , 2017 , 87, 1155-1164	1.7	19
26	Characterization and control of oxidized cellulose in ramie fibers during oxidative degumming. <i>Textile Reseach Journal</i> , 2017 , 87, 1828-1840	1.7	9
25	Design and optimization of a photo-thermal energy conversion model based on polar bear hair. <i>Solar Energy Materials and Solar Cells</i> , 2017 , 159, 345-351	6.4	24
24	Property of ramie fiber degummed with Fenton reagent. Fibers and Polymers, 2017, 18, 1891-1897	2	18
23	Structural and thermal property changes of plasticized spinning polyacrylonitrile fibers under different spinning speeds. <i>Journal of Applied Polymer Science</i> , 2017 , 134, 45267	2.9	6
22	Flexible Hierarchical ZrO Nanoparticle-Embedded SiO Nanofibrous Membrane as a Versatile Tool for Efficient Removal of Phosphate. <i>ACS Applied Materials & Acs Applied & Acs Applied Materials & Acs Applied & Acs Ap</i>	9.5	59
21	Triboelectrification-Enabled Self-Powered Detection and Removal of Heavy Metal Ions in Wastewater. <i>Advanced Materials</i> , 2016 , 28, 2983-91	24	161
20	High-efficiency ramie fiber degumming and self-powered degumming wastewater treatment using triboelectric nanogenerator. <i>Nano Energy</i> , 2016 , 22, 548-557	17.1	114
19	Composition of ramie hemicelluloses and effect of polysaccharides on fiber properties. <i>Textile Reseach Journal</i> , 2016 , 86, 451-460	1.7	24
18	Rolling Friction Enhanced Free-Standing Triboelectric Nanogenerators and their Applications in Self-Powered Electrochemical Recovery Systems. <i>Advanced Functional Materials</i> , 2016 , 26, 1054-1062	15.6	74
17	The cellulose protection agent used in the oxidation degumming of ramie. <i>Textile Reseach Journal</i> , 2016 , 86, 1109-1118	1.7	17
16	Networks of triboelectric nanogenerators for harvesting water wave energy: a potential approach toward blue energy. <i>ACS Nano</i> , 2015 , 9, 3324-31	16.7	419
15	Blow-driven triboelectric nanogenerator as an active alcohol breath analyzer. <i>Nano Energy</i> , 2015 , 16, 38-46	17.1	217

LIST OF PUBLICATIONS

14	Ultrathin, rollable, paper-based triboelectric nanogenerator for acoustic energy harvesting and self-powered sound recording. <i>ACS Nano</i> , 2015 , 9, 4236-43	16.7	323
13	Light-induced pyroelectric effect as an effective approach for ultrafast ultraviolet nanosensing. Nature Communications, 2015, 6, 8401	17.4	180
12	Analysis of oxidized cellulose introduced into ramie fiber by oxidation degumming. <i>Textile Reseach Journal</i> , 2015 , 85, 2125-2135	1.7	23
11	Automatic Mode Transition Enabled Robust Triboelectric Nanogenerators. ACS Nano, 2015, 9, 12334-43	3 16.7	94
10	The effect of oxidation reduction potential on the degumming of ramie fibers with hydrogen peroxide. <i>Journal of the Textile Institute</i> , 2015 , 106, 1251-1261	1.5	11
9	A Flexible Fiber-Based Supercapacitor-Triboelectric-Nanogenerator Power System for Wearable Electronics. <i>Advanced Materials</i> , 2015 , 27, 4830-6	24	276
8	An ultrarobust high-performance triboelectric nanogenerator based on charge replenishment. <i>ACS Nano</i> , 2015 , 9, 5577-84	16.7	110
7	Etyclodextrin enhanced triboelectrification for self-powered phenol detection and electrochemical degradation. <i>Energy and Environmental Science</i> , 2015 , 8, 887-896	35.4	167
6	Eardrum-inspired active sensors for self-powered cardiovascular system characterization and throat-attached anti-interference voice recognition. <i>Advanced Materials</i> , 2015 , 27, 1316-26	24	366
5	Effect of peroxide and softness modification on properties of ramie fiber. <i>Fibers and Polymers</i> , 2014 , 15, 2105-2111	2	29
4	Flexible Temperature Sensors Constructed with Fiber Materials. Advanced Materials Technologies,2101	1 8 528	8
3	Wearable triboelectric nanogenerators constructed from electrospun nanofibers		2
2	One-step extraction of ramie cellulose fibers and reutilization of degumming solution. <i>Textile Reseach Journal</i> ,004051752210868	1.7	1
1	Process optimization and comprehensive utilization of recyclable deep eutectic solvent for the production of ramie cellulose fibers. <i>Cellulose</i> ,1	5.5	1