
Zhaoling Li

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3875565/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Networks of Triboelectric Nanogenerators for Harvesting Water Wave Energy: A Potential Approach toward Blue Energy. ACS Nano, 2015, 9, 3324-3331.	7.3	509
2	Eardrumâ€Inspired Active Sensors for Selfâ€Powered Cardiovascular System Characterization and Throatâ€Attached Antiâ€Interference Voice Recognition. Advanced Materials, 2015, 27, 1316-1326.	11.1	487
3	Ultrathin, Rollable, Paper-Based Triboelectric Nanogenerator for Acoustic Energy Harvesting and Self-Powered Sound Recording. ACS Nano, 2015, 9, 4236-4243.	7.3	419
4	Superhydrophilic and underwater superoleophobic nanofibrous membrane with hierarchical structured skin for effective oil-in-water emulsion separation. Journal of Materials Chemistry A, 2017, 5, 497-502.	5.2	332
5	A Flexible Fiberâ€Based Supercapacitor–Triboelectricâ€Nanogenerator Power System for Wearable Electronics. Advanced Materials, 2015, 27, 4830-4836.	11.1	322
6	Light-induced pyroelectric effect as an effective approach for ultrafast ultraviolet nanosensing. Nature Communications, 2015, 6, 8401.	5.8	261
7	Blow-driven triboelectric nanogenerator as an active alcohol breath analyzer. Nano Energy, 2015, 16, 38-46.	8.2	255
8	Triboelectrificationâ€Enabled Selfâ€Powered Detection and Removal of Heavy Metal Ions in Wastewater. Advanced Materials, 2016, 28, 2983-2991.	11.1	204
9	β-cyclodextrin enhanced triboelectrification for self-powered phenol detection and electrochemical degradation. Energy and Environmental Science, 2015, 8, 887-896.	15.6	192
10	Allâ€Fiber Structured Electronic Skin with High Elasticity and Breathability. Advanced Functional Materials, 2020, 30, 1908411.	7.8	170
11	Conductance-stable liquid metal sheath-core microfibers for stretchy smart fabrics and self-powered sensing. Science Advances, 2021, 7, .	4.7	166
12	Nanofibrous membrane constructed wearable triboelectric nanogenerator for high performance biomechanical energy harvesting. Nano Energy, 2017, 36, 341-348.	8.2	162
13	Highly flexible, breathable, tailorable and washable power generation fabrics for wearable electronics. Nano Energy, 2019, 58, 750-758.	8.2	155
14	Flexible Highâ€Resolution Triboelectric Sensor Array Based on Patterned Laserâ€Induced Graphene for Selfâ€Powered Realâ€Time Tactile Sensing. Advanced Functional Materials, 2021, 31, 2100709.	7.8	152
15	Highly shape adaptive fiber based electronic skin for sensitive joint motion monitoring and tactile sensing. Nano Energy, 2020, 69, 104429.	8.2	149
16	Humidity-resisting triboelectric nanogenerator for high performance biomechanical energy harvesting. Nano Energy, 2017, 40, 282-288.	8.2	145
17	Multilayered fiber-based triboelectric nanogenerator with high performance for biomechanical energy harvesting. Nano Energy, 2018, 53, 726-733.	8.2	144
18	An Ultrarobust High-Performance Triboelectric Nanogenerator Based on Charge Replenishment. ACS Nano, 2015, 9, 5577-5584.	7.3	135

ZHAOLING LI

#	Article	IF	CITATIONS
19	High-efficiency ramie fiber degumming and self-powered degumming wastewater treatment using triboelectric nanogenerator. Nano Energy, 2016, 22, 548-557.	8.2	132
20	Hierarchically Rough Structured and Self-Powered Pressure Sensor Textile for Motion Sensing and Pulse Monitoring. ACS Applied Materials & Interfaces, 2020, 12, 1597-1605.	4.0	121
21	Highly Wearable, Breathable, and Washable Sensing Textile for Human Motion and Pulse Monitoring. ACS Applied Materials & Interfaces, 2020, 12, 19965-19973.	4.0	119
22	Automatic Mode Transition Enabled Robust Triboelectric Nanogenerators. ACS Nano, 2015, 9, 12334-12343.	7.3	111
23	A hybrid comprised of porous carbon nanofibers and rGO for efficient electromagnetic wave absorption. Carbon, 2020, 157, 703-713.	5.4	109
24	Rolling Friction Enhanced Freeâ€Standing Triboelectric Nanogenerators and their Applications in Selfâ€Powered Electrochemical Recovery Systems. Advanced Functional Materials, 2016, 26, 1054-1062.	7.8	101
25	Bioinspired transparent and antibacterial electronic skin for sensitive tactile sensing. Nano Energy, 2021, 81, 105669.	8.2	97
26	Tailoring Mechanically Robust Poly(m-phenylene isophthalamide) Nanofiber/nets for Ultrathin High-Efficiency Air Filter. Scientific Reports, 2017, 7, 40550.	1.6	90
27	Energy autonomous hybrid electronic skin with multi-modal sensing capabilities. Nano Energy, 2020, 78, 105208.	8.2	84
28	Wearable biosensor for sensitive detection of uric acid in artificial sweat enabled by a fiber structured sensing interface. Nano Energy, 2021, 85, 106031.	8.2	82
29	Flexible Temperature Sensors Constructed with Fiber Materials. Advanced Materials Technologies, 2022, 7, .	3.0	82
30	Flexible Hierarchical ZrO ₂ Nanoparticle-Embedded SiO ₂ Nanofibrous Membrane as a Versatile Tool for Efficient Removal of Phosphate. ACS Applied Materials & Interfaces, 2016, 8, 34668-34676.	4.0	81
31	Superstable and Intrinsically Selfâ€Healing Fibrous Membrane with Bionic Confined Protective Structure for Breathable Electronic Skin. Angewandte Chemie - International Edition, 2022, 61, .	7.2	70
32	Air-permeable electrode for highly sensitive and noninvasive glucose monitoring enabled by graphene fiber fabrics. Nano Energy, 2022, 93, 106904.	8.2	63
33	Co3O4/carbon composite nanofibrous membrane enabled high-efficiency electromagnetic wave absorption. Scientific Reports, 2018, 8, 12402.	1.6	58
34	Facile Strategy for Fabrication of Flexible, Breathable, and Washable Piezoelectric Sensors via Welding of Nanofibers with Multiwalled Carbon Nanotubes (MWCNTs). ACS Applied Materials & Interfaces, 2019, 11, 38023-38030.	4.0	52
35	Nanofibrous membrane constructed magnetic materials for high-efficiency electromagnetic wave absorption. Composites Part B: Engineering, 2018, 155, 397-404.	5.9	50
36	Light and Flexible Composite Nanofibrous Membranes for High-Efficiency Electromagnetic Absorption in a Broad Frequency. ACS Applied Materials & Interfaces, 2018, 10, 44561-44569.	4.0	47

ZHAOLING LI

#	Article	IF	CITATIONS
37	Highly Flexible, Efficient, and Sandwich-Structured Infrared Radiation Heating Fabric. ACS Applied Materials & Interfaces, 2020, 12, 11016-11025.	4.0	46
38	Microwave-assisted fabrication of sea cucumber-like hollow structured composite for high-performance electromagnetic wave absorption. Chemical Engineering Journal, 2020, 392, 123646.	6.6	45
39	A dual-mode electronic skin textile for pressure and temperature sensing. Chemical Engineering Journal, 2021, 425, 130599.	6.6	44
40	Effect of peroxide and softness modification on properties of ramie fiber. Fibers and Polymers, 2014, 15, 2105-2111.	1.1	40
41	Composition of ramie hemicelluloses and effect of polysaccharides on fiber properties. Textile Reseach Journal, 2016, 86, 451-460.	1.1	36
42	Seaweedâ€Derived Electrospun Nanofibrous Membranes for Ultrahigh Protein Adsorption. Advanced Functional Materials, 2019, 29, 1905610.	7.8	36
43	Analysis of oxidized cellulose introduced into ramie fiber by oxidation degumming. Textile Reseach Journal, 2015, 85, 2125-2135.	1.1	34
44	Design and optimization of a photo-thermal energy conversion model based on polar bear hair. Solar Energy Materials and Solar Cells, 2017, 159, 345-351.	3.0	33
45	Property of ramie fiber degummed with Fenton reagent. Fibers and Polymers, 2017, 18, 1891-1897.	1.1	32
46	Mathematical and experimental analysis on solar thermal energy harvesting performance of the textile-based solar thermal energy collector. Renewable Energy, 2018, 129, 553-560.	4.3	32
47	Solar thermal energy harvesting properties of spacer fabric composite used for transparent insulation materials. Solar Energy Materials and Solar Cells, 2018, 174, 140-145.	3.0	31
48	Highly flexible, efficient, and wearable infrared radiation heating carbon fabric. Chemical Engineering Journal, 2021, 417, 128114.	6.6	31
49	Nanocrystalline cellulose extracted from bast fibers: Preparation, characterization, and application. Carbohydrate Polymers, 2022, 290, 119462.	5.1	30
50	High-efficiency and recyclable ramie cellulose fiber degumming enabled by deep eutectic solvent. Industrial Crops and Products, 2021, 171, 113879.	2.5	28
51	Sustained-release alkali source used in the oxidation degumming of ramie. Textile Reseach Journal, 2017, 87, 1155-1164.	1.1	27
52	Reaction environment self-modification on low-coordination Ni2+ octahedra atomic interface for superior electrocatalytic overall water splitting. Nano Research, 2020, 13, 3068-3074.	5.8	27
53	The cellulose protection agent used in the oxidation degumming of ramie. Textile Reseach Journal, 2016, 86, 1109-1118.	1.1	24
54	Superstable and Intrinsically Selfâ€Healing Fibrous Membrane with Bionic Confined Protective Structure for Breathable Electronic Skin. Angewandte Chemie, 2022, 134, .	1.6	24

Zhaoling Li

#	Article	IF	CITATIONS
55	Treatment of ramie fiber with different techniques: the influence of diammonium phosphate on interfacial adhesion properties of ramie fiber-reinforced polylactic acid composite. Iranian Polymer Journal (English Edition), 2017, 26, 341-354.	1.3	22
56	Rationally designed carbon coated ZnSnS3 nano cubes as high-performance anode for advanced sodium-ion batteries. Electrochimica Acta, 2018, 292, 646-654.	2.6	18
57	Process optimization and comprehensive utilization of recyclable deep eutectic solvent for the production of ramie cellulose fibers. Cellulose, 2022, 29, 3689-3701.	2.4	17
58	Analysis of Structural Changes in Jute Fibers after Peracetic Acid Treatment. Journal of Engineered Fibers and Fabrics, 2017, 12, 155892501701200.	0.5	15
59	The effect of oxidation–reduction potential on the degumming of ramie fibers with hydrogen peroxide. Journal of the Textile Institute, 2015, 106, 1251-1261.	1.0	14
60	Anthraquinone-assisted deep eutectic solvent degumming of ramie fibers: Evaluation of fiber properties and degumming performance. Industrial Crops and Products, 2022, 185, 115115.	2.5	14
61	Characterization and control of oxidized cellulose in ramie fibers during oxidative degumming. Textile Reseach Journal, 2017, 87, 1828-1840.	1.1	13
62	Structural and thermal property changes of plasticized spinning polyacrylonitrile fibers under different spinning speeds. Journal of Applied Polymer Science, 2017, 134, 45267.	1.3	10
63	Optimization design of a flexible absorption device for solar energy application. E-Polymers, 2017, 17, 227-234.	1.3	6
64	One-step extraction of ramie cellulose fibers and reutilization of degumming solution. Textile Reseach Journal, 2022, 92, 3579-3590.	1.1	6
65	Effect of Pre-carbonization Temperature on the Properties of Plasticized Spinning Polyacrylonitrile Fibers. Fibers and Polymers, 2018, 19, 692-696.	1.1	5
66	Energy harvesting from human motions for wearable applications. Industria Textila, 2018, 69, 390-393.	0.5	4
67	Extraction of Ramie Fiber in Alkali Hydrogen Peroxide System Supported by Controlled-release Alkali Source. Journal of Visualized Experiments, 2018, , .	0.2	3
68	Wearable triboelectric nanogenerators constructed from electrospun nanofibers. , 0, , 8-1-8-25.		3
69	Morphology and Structure of Electrospun Nanofibrous Materials. , 2019, , 112-178.		1