
David L Wright

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3875338/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Exercising the Sleepy-ing Brain: Exercise, Sleep, and Sleep Loss on Memory. Exercise and Sport Sciences Reviews, 2022, 50, 38-48.	3.0	9
2	The Interactions Between Primary Somatosensory and Motor Cortex during Human Grasping Behaviors. Neuroscience, 2022, 485, 1-11.	2.3	8
3	The decay and consolidation of effector-independent motor memories. Scientific Reports, 2022, 12, 3131.	3.3	4
4	Differences in motor unit recruitment patterns and low frequency oscillation of discharge rates between unilateral and bilateral isometric muscle contractions. Human Movement Science, 2022, 83, 102952.	1.4	2
5	Improving consolidation by applying anodal transcranial direct current stimulation at primary motor cortex during repetitive practice. Neurobiology of Learning and Memory, 2021, 178, 107365.	1.9	11
6	Prefrontal Cortex Activation During Motor Sequence Learning Under Interleaved and Repetitive Practice: A Two-Channel Near-Infrared Spectroscopy Study. Frontiers in Human Neuroscience, 2021, 15, 644968.	2.0	2
7	A multi-representation approach to the contextual interference effect: effects of sequence length and practice. Psychological Research, 2021, , 1.	1.7	4
8	Commentary: Variability of Practice, Information Processing, and Decision Making—How Much Do We Know?. Frontiers in Psychology, 2021, 12, 685749.	2.1	3
9	Exposure to Sleep, Rest, or Exercise Impacts Skill Memory Consolidation but so Too Can a Challenging Practice Schedule. ENeuro, 2021, 8, ENEURO.0198-21.2021.	1.9	1
10	Improving online and offline gain from repetitive practice using anodal tDCS at dorsal premotor cortex. Npj Science of Learning, 2021, 6, 31.	2.8	3
11	Application of anodal tDCS at primary motor cortex immediately after practice of a motor sequence does not improve offline gain. Experimental Brain Research, 2020, 238, 29-37.	1.5	13
12	Improvement in trunk kinematics after treadmill-based reactive balance training among older adults is strongly associated with trunk kinematics before training. Journal of Biomechanics, 2020, 113, 110112.	2.1	4
13	The Simon effect in a discrete sequence production task: Key-specific stimuli cannot be ignored due to attentional capture. Acta Psychologica, 2020, 205, 103044.	1.5	5
14	Motor and spatial representations of action: corticospinal excitability in M1 after training with a bimanual skill. Experimental Brain Research, 2020, 238, 1191-1202.	1.5	0
15	Transcranial Direct Current Stimulation of Supplementary Motor Region Impacts the Effectiveness of Interleaved and Repetitive Practice Schedules for Retention of Motor Skills. Neuroscience, 2020, 435, 58-72.	2.3	16
16	Exercise Reduces Competition between Procedural and Declarative Memory Systems. ENeuro, 2020, 7, ENEURO.0070-20.2020.	1.9	7
17	The protective effects of acute cardiovascular exercise on the interference of procedural memory. Psychological Research, 2019, 83, 1543-1555.	1.7	13
18	Expert monitoring and verbal feedback as sources of performance pressure. Acta Psychologica, 2018, 186, 39-46.	1.5	4

DAVID L WRIGHT

#	Article	IF	CITATIONS
19	Improving novel motor learning through prior high contextual interference training. Acta Psychologica, 2018, 182, 55-64.	1.5	16
20	Bimanual coordination patterns are stabilized under monitoring-pressure. Experimental Brain Research, 2017, 235, 1909-1918.	1.5	3
21	Insufficient chunk concatenation may underlie changes in sleep-dependent consolidation of motor sequence learning in older adults. Learning and Memory, 2016, 23, 455-459.	1.3	15
22	Contextual Interference Can Facilitate Motor Learning in Older Adults and in Individuals With Parkinson's Disease. Journal of Motor Behavior, 2016, 48, 509-518.	0.9	17
23	Allowing time to consolidate knowledge gained through random practice facilitates later novel motor sequence acquisition. Acta Psychologica, 2016, 163, 153-166.	1.5	9
24	The Structural Relationship Between Two Motor Sequences Practiced Close in Time Impacts Offline Facilitation. Journal of Motor Behavior, 2016, 48, 47-56.	0.9	7
25	An acute bout of aerobic exercise can protect immediate offline motor sequence gains. Psychological Research, 2016, 80, 518-531.	1.7	24
26	Consolidating behavioral and neurophysiologic findings to explain the influence of contextual interference during motor sequence learning. Psychonomic Bulletin and Review, 2016, 23, 1-21.	2.8	70
27	Processing of visual information compromises the ability of older adults to control novel fine motor tasks. Experimental Brain Research, 2015, 233, 3475-3488.	1.5	19
28	Learning a keying sequence you never executed: Evidence for independent associative and motor chunk learning. Acta Psychologica, 2014, 151, 24-31.	1.5	24
29	Learning and Transfer of a Relative Phase Pattern and a Joint Amplitude Ratio in a Rhythmic Multijoint Arm Movement. Journal of Motor Behavior, 2007, 39, 49-67.	0.9	24
30	Error Detection Processes During Observational Learning. Research Quarterly for Exercise and Sport, 2006, 77, 177-184.	1.4	3
31	Programming and Reprogramming Sequence Timing Following High and Low Contextual Interference Practice. Research Quarterly for Exercise and Sport, 2005, 76, 258-266.	1.4	21
32	Long-Term Motor Programming Improvements Occur Via Concatenation of Movement Sequences During Random But Not During Blocked Practice. Journal of Motor Behavior, 2004, 36, 39-50.	0.9	57
33	Manipulating Generalized Motor Program Difficulty during Blocked and Random Practice Does Not Affect Parameter Learning. Research Quarterly for Exercise and Sport, 2001, 72, 32-38.	1.4	32
34	Planning and Executing Simple Movements: Contributions of Relative-Time and Overall-Duration Specification. Journal of Motor Behavior, 2001, 33, 273-285.	0.9	8
35	An Assessment of the Attention Demands during Random- and Blocked-Practice Schedules. Quarterly Journal of Experimental Psychology Section A: Human Experimental Psychology, 2000, 53, 591-606.	2.3	83
36	Reduced-Frequency Concurrent and Terminal Feedback: A Test of the Guidance Hypothesis. Journal of Motor Behavior, 2000, 32, 287-296.	0.9	107

DAVID L WRIGHT

#	Article	IF	CITATIONS
37	Optimizing Generalized Motor Program and Parameter Learning. Research Quarterly for Exercise and Sport, 2000, 71, 10-24.	1.4	98
38	The Contribution of Elaborative Processing to the Contextual Interference Effect. Research Quarterly for Exercise and Sport, 1992, 63, 30-37.	1.4	43
39	The Dual-Task Methodology and Assessing the Attentional Demands of Ambulation with Walking Devices. Physical Therapy, 1992, 72, 306-312.	2.4	114