
Yassemi Capetanaki

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3874632/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Galectin-3 interferes with tissue repair and promotes cardiac dysfunction and comorbidities in a genetic heart failure model. Cellular and Molecular Life Sciences, 2022, 79, 250.	5.4	10
2	Desmin deficiency affects the microenvironment of the cardiac side population and Sca1+ stem cell population of the adult heart and impairs their cardiomyogenic commitment. Cell and Tissue Research, 2022, 389, 309-326.	2.9	4
3	Skeletal and Cardiac Muscle Disorders Caused by Mutations in Genes Encoding Intermediate Filament Proteins. International Journal of Molecular Sciences, 2021, 22, 4256.	4.1	29
4	Myospryn deficiency leads to impaired cardiac structure and function and schizophrenia-associated symptoms. Cell and Tissue Research, 2021, 385, 675-696.	2.9	3
5	Three in a Box: Understanding Cardiomyocyte, Fibroblast, and Innate Immune Cell Interactions to Orchestrate Cardiac Repair Processes. Frontiers in Cardiovascular Medicine, 2019, 6, 32.	2.4	43
6	Desmin deficiency is not sufficient to prevent corneal fibrosis. Experimental Eye Research, 2019, 180, 155-163.	2.6	2
7	Amelioration of desmin network defects by αB-crystallin overexpression confers cardioprotection in a mouse model of dilated cardiomyopathy caused by LMNA gene mutation. Journal of Molecular and Cellular Cardiology, 2018, 125, 73-86.	1.9	31
8	Intermediate filaments in cardiomyopathy. Biophysical Reviews, 2018, 10, 1007-1031.	3.2	71
9	Opposite effects of catalase and MnSOD ectopic expression on stress induced defects and mortality in the desmin deficient cardiomyopathy model. Free Radical Biology and Medicine, 2017, 110, 206-218.	2.9	20
10	Type III Intermediate Filaments Desmin, Glial Fibrillary Acidic Protein (GFAP), Vimentin, and Peripherin. Cold Spring Harbor Perspectives in Biology, 2017, 9, a021642.	5.5	89
11	Nebulette is a powerful cytolinker organizing desmin and actin in mouse hearts. Molecular Biology of the Cell, 2016, 27, 3869-3882.	2.1	26
12	Strategies to Study Desmin in Cardiac Muscle and Culture Systems. Methods in Enzymology, 2016, 568, 427-459.	1.0	14
13	Desmin and αB-crystallin interplay in maintenance of mitochondrial homeostasis and cardiomyocyte survival. Journal of Cell Science, 2016, 129, 3705-3720.	2.0	59
14	Desmin enters the nucleus of cardiac stem cells and modulates Nkx2.5 expression by participating in transcription factor complexes that interact with the <i>nkx2.5</i> gene. Biology Open, 2016, 5, 140-153.	1.2	21
15	Desmin related disease: a matter of cell survival failure. Current Opinion in Cell Biology, 2015, 32, 113-120.	5.4	103
16	Complement system modulation as a target for treatment of arrhythmogenic cardiomyopathy. Basic Research in Cardiology, 2015, 110, 27.	5.9	38
17	Tumor necrosis factor-α confers cardioprotection through ectopic expression of keratins K8 and K18. Nature Medicine, 2015, 21, 1076-1084.	30.7	93
18	Μyospryn: a multifunctional desmin-associated protein. Histochemistry and Cell Biology, 2013, 140, 55-63.	1.7	28

YASSEMI CAPETANAKI

#	Article	IF	CITATIONS
19	Regulation of adverse remodelling by osteopontin in a genetic heart failure model. European Heart Journal, 2012, 33, 1954-1963.	2.2	80
20	A missense mutation in desmin tail domain linked to human dilated cardiomyopathy promotes cleavage of the head domain and abolishes its Zâ€disc localization. FASEB Journal, 2008, 22, 3318-3327.	0.5	40
21	Desmin mediates TNF-α–induced aggregate formation and intercalated disk reorganization in heart failure. Journal of Cell Biology, 2008, 181, 761-775.	5.2	62
22	Proper Perinuclear Localization of the TRIM-like Protein Myospryn Requires Its Binding Partner Desmin. Journal of Biological Chemistry, 2007, 282, 35211-35221.	3.4	48
23	Muscle intermediate filaments and their links to membranes and membranous organelles. Experimental Cell Research, 2007, 313, 2063-2076.	2.6	237
24	Alterations in the heart mitochondrial proteome in a desmin null heart failure model. Journal of Molecular and Cellular Cardiology, 2005, 38, 461-474.	1.9	57
25	Bcl-2 overexpression corrects mitochondrial defects and ameliorates inherited desmin null cardiomyopathy. Proceedings of the National Academy of Sciences of the United States of America, 2004, 101, 769-774.	7.1	120
26	Cardiomyocyte-specific desmin rescue of desmin null cardiomyopathy excludes vascular involvement. Journal of Molecular and Cellular Cardiology, 2004, 36, 121-128.	1.9	27
27	Structural and Functional Roles of Desmin in Mouse Skeletal Muscle during Passive Deformation. Biophysical Journal, 2004, 86, 2993-3008.	0.5	112
28	Single hematopoietic stem cells generate skeletal muscle through myeloid intermediates. Nature Medicine, 2003, 9, 1520-1527.	30.7	379
29	Loss of desmin leads to impaired voluntary wheel running and treadmill exercise performance. Journal of Applied Physiology, 2003, 95, 1617-1622.	2.5	46
30	Sarcolemmal Organization in Skeletal Muscle Lacking Desmin: Evidence for Cytokeratins Associated with the Membrane Skeleton at Costameres. Molecular Biology of the Cell, 2002, 13, 2347-2359.	2.1	77
31	Costameres: Repeating Structures at the Sarcolemma of Skeletal Muscle. Clinical Orthopaedics and Related Research, 2002, 403, S203-S210.	1.5	57
32	Extensive Induction of Important Mediators of Fibrosis and Dystrophic Calcification in Desmin-Deficient Cardiomyopathy. American Journal of Pathology, 2002, 160, 943-952.	3.8	50
33	Amino-terminally truncated desmin rescues fusion ofdesâ ^{°/} /â ^{°/} myoblasts but negatively affects cardiomyogenesis and smooth muscle development. FEBS Letters, 2002, 523, 229-233.	2.8	16
34	Desmin Cytoskeleton A Potential Regulator of Muscle Mitochondrial Behavior and Function. Trends in Cardiovascular Medicine, 2002, 12, 339-348.	4.9	196
35	Evidence for increased myofibrillar mobility in desmin-null mouse skeletal muscle. Journal of Experimental Biology, 2002, 205, 321-325.	1.7	39

36 Desmin cytoskeleton in healthy and failing heart. , 2000, 5, 203-220.

23

YASSEMI CAPETANAKI

#	Article	IF	CITATIONS
37	Desmin knockout muscles generate lower stress and are less vulnerable to injury compared with wild-type muscles. American Journal of Physiology - Cell Physiology, 2000, 279, C1116-C1122.	4.6	112
38	Desmin Cytoskeleton Linked to Muscle Mitochondrial Distribution and Respiratory Function. Journal of Cell Biology, 2000, 150, 1283-1298.	5.2	330
39	The Absence of Desmin Leads to Cardiomyocyte Hypertrophy and Cardiac Dilation with Compromised Systolic Function. Journal of Molecular and Cellular Cardiology, 1999, 31, 2063-2076.	1.9	159
40	Desmin in Muscle Formation and Maintenance: Knockouts and Consequences Cell Structure and Function, 1997, 22, 103-116.	1.1	193
41	A Single MEF2 Site Governs Desmin Transcription in Both Heart and Skeletal Muscle during Mouse Embryogenesis. Developmental Biology, 1996, 174, 1-13.	2.0	119
42	Cytoskeletal Control of Myogenesis: A Desmin Null Mutation Blocks the Myogenic Pathway during Embryonic Stem Cell Differentiation. Developmental Biology, 1995, 172, 422-439.	2.0	112
43	Regulation of the mouse desmin gene: transactivation by MyoD, myogenin, MRF4 and Myf5. Nucleic Acids Research, 1993, 21, 335-343.	14.5	93