List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3874432/publications.pdf Version: 2024-02-01

WEI-FENC WEI

#	Article	IF	CITATIONS
1	Structure modulation strategy for suppressing high voltage P3-O1 phase transition of O3-NaMn0.5Ni0.5O2 layered cathode. Chemical Engineering Journal, 2022, 431, 133454.	6.6	19
2	Shear-resistant interface of layered oxide cathodes for sodium ion batteries. Energy Storage Materials, 2022, 45, 389-398.	9.5	33
3	Anchoring Interfacial Nickel Cations by Tunable Coordinative Structure for Highly Stabilized Nickel-Rich Layered Oxide Cathodes. Nano Energy, 2022, 93, 106803.	8.2	18
4	Regulating oxygen covalent electron localization to enhance anionic redox reversibility of lithium-rich layered oxide cathodes. Energy Storage Materials, 2022, 46, 512-522.	9.5	44
5	Countering Voltage Decay, Redox Sluggishness, and Calendering Incompatibility by Nearâ€Zero‣train Interphase in Lithiumâ€Rich, Manganeseâ€Based Layered Oxide Electrodes. Advanced Functional Materials, 2022, 32, .	7.8	24
6	Implanting an ion-selective "skin―in electrolyte towards high-energy and safe lithium-sulfur battery. Matter, 2022, 5, 2225-2237.	5.0	14
7	A Functional Organic Zinc-Chelate Formation with Nanoscaled Granular Structure Enabling Long-Term and Dendrite-Free Zn Anodes. ACS Nano, 2022, 16, 9736-9747.	7.3	104
8	Organoboron ontaining Polymer Electrolytes for Highâ€Performance Lithium Batteries. Advanced Functional Materials, 2021, 31, 2008632.	7.8	28
9	Uniform and dendrite-free zinc deposition enabled by <i>in situ</i> formed AgZn ₃ for the zinc metal anode. Journal of Materials Chemistry A, 2021, 9, 8452-8461.	5.2	121
10	Liquid Alloy Interlayer for Aqueous Zinc-Ion Battery. ACS Energy Letters, 2021, 6, 675-683.	8.8	135
11	Regulating Anion Redox and Cation Migration to Enhance the Structural Stability of Li-Rich Layered Oxides. ACS Applied Materials & Interfaces, 2021, 13, 12159-12168.	4.0	32
12	Heteroepitaxial interface of layered cathode materials for lithium ion batteries. Energy Storage Materials, 2021, 37, 161-189.	9.5	19
13	Influence of anion substitution on 3D-architectured Ni-Co-A (A=H, O, P) as efficient cathode materials towards rechargeable Zn-based battery. Energy Storage Materials, 2021, 37, 336-344.	9.5	28
14	Engineering Fe–N Coordination Structures for Fast Redox Conversion in Lithium–Sulfur Batteries. Advanced Materials, 2021, 33, e2100171.	11.1	167
15	Surface-dependent stress-corrosion cracking in Ni-rich layered oxide cathodes. Acta Materialia, 2021, 212, 116914.	3.8	20
16	MXene and MXene-based materials for lithium-sulfur batteries. Progress in Natural Science: Materials International, 2021, 31, 501-513.	1.8	32
17	2D amorphous-MoO3â~'x@Ti3C2-MXene non-van der Waals heterostructures as anode materials for lithium-ion batteries. Nano Energy, 2021, 86, 106139.	8.2	63
18	Interfacially Redistributed charge for robust lithium metal anode. Nano Energy, 2021, 87, 106212.	8.2	48

#	Article	IF	CITATIONS
19	Insights into the Enhanced Structural and Thermal Stabilities of Nb-Substituted Lithium-Rich Layered Oxide Cathodes. ACS Applied Materials & Interfaces, 2021, 13, 45619-45629.	4.0	26
20	Hierarchical N-doping germanium/carbon nanofibers as anode for high-performance lithium-ion and sodium-ion batteries. Nanotechnology, 2020, 31, 015402.	1.3	22
21	Mg Doped Li–LiB Alloy with In Situ Formed Lithiophilic LiB Skeleton for Lithium Metal Batteries. Advanced Science, 2020, 7, 1902643.	5.6	106
22	Effect of Sodium Content on the Electrochemical Performance of Li-Substituted, Manganese-Based, Sodium-Ion Layered Oxide Cathodes. ACS Applied Materials & Interfaces, 2020, 12, 2191-2198.	4.0	18
23	A P2@Tunnel Heterostructure Cathode for Highâ€Performance Sodiumâ€ŀon Batteries. ChemElectroChem, 2020, 7, 4383-4389.	1.7	11
24	Electronic-structure tuning of honeycomb layered oxide cathodes for superior performance. Acta Materialia, 2020, 199, 34-41.	3.8	9
25	Dual-engineered separator for highly robust, all-climate lithium-sulfur batteries. Energy Storage Materials, 2020, 32, 46-54.	9.5	54
26	Heteroepitaxial oxygen-buffering interface enables a highly stable cobalt-free Li-rich layered oxide cathode. Nano Energy, 2020, 75, 104995.	8.2	74
27	Unraveling Atomically Irreversible Cation Migration in Sodium Layered Oxide Cathodes. Journal of Physical Chemistry Letters, 2020, 11, 5464-5470.	2.1	22
28	A New Scalable Preparation of Metal Nanosheets: Potential Applications for Aqueous Znâ€lon Batteries Anode. Advanced Functional Materials, 2020, 30, 2003187.	7.8	46
29	Strain engineering by atomic lattice locking in P2-type layered oxide cathode for high-voltage sodium-ion batteries. Nano Energy, 2020, 76, 105061.	8.2	25
30	Insight into the Structural Disorder in Honeycomb-Ordered Sodium-Layered Oxide Cathodes. IScience, 2020, 23, 100898.	1.9	13
31	Dualâ€Role Surface Modification of Layered Oxide Cathodes for Highâ€Power Sodiumâ€Ion Batteries. ChemElectroChem, 2020, 7, 691-696.	1.7	12
32	Core–Shell Layered Oxide Cathode for High-Performance Sodium-Ion Batteries. ACS Applied Materials & Interfaces, 2020, 12, 7144-7152.	4.0	47
33	NiCoO2/NiCoP@Ni nanowire arrays: tunable composition and unique structure design for high-performance winding asymmetric hybrid supercapacitors. Rare Metals, 2020, 39, 1034-1044.	3.6	80
34	Electrochemical mechanism of high Na-content P2-type layered oxides for sodium-ion batteries. Rare Metals, 2020, 39, 332-334.	3.6	46
35	Enhancing the electrochemical performance of Li2MnSiO4 cathode by manipulating the cathode-electrolyte interphase with triphenylphosphine oxide additive. Electrochimica Acta, 2020, 348, 136340.	2.6	9
36	Achieving high structure and voltage stability in cobalt-free Li-rich layered oxide cathodes via selective dual-cation doping. Energy Storage Materials, 2020, 32, 37-45.	9.5	69

#	Article	IF	CITATIONS
37	3Dâ€Printed Microelectrodes with a Developed Conductive Network and Hierarchical Pores toward High Areal Capacity for Microbatteries. Advanced Materials Technologies, 2019, 4, 1800402.	3.0	51
38	A borate decorated anion-immobilized solid polymer electrolyte for dendrite-free, long-life Li metal batteries. Journal of Materials Chemistry A, 2019, 7, 19970-19976.	5.2	32
39	Carbon quantum dot micelles tailored hollow carbon anode for fast potassium and sodium storage. Nano Energy, 2019, 65, 104038.	8.2	250
40	A borate-rich, cross-linked gel polymer electrolyte with near-single ion conduction for lithium metal batteries. Journal of Materials Chemistry A, 2019, 7, 18547-18557.	5.2	54
41	2D Titania–Carbon Superlattices Vertically Encapsulated in 3D Hollow Carbon Nanospheres Embedded with 0D TiO ₂ Quantum Dots for Exceptional Sodiumâ€lon Storage. Angewandte Chemie - International Edition, 2019, 58, 14125-14128.	7.2	47
42	2D Titania–Carbon Superlattices Vertically Encapsulated in 3D Hollow Carbon Nanospheres Embedded with 0D TiO 2 Quantum Dots for Exceptional Sodiumâ€ion Storage. Angewandte Chemie, 2019, 131, 14263-14266.	1.6	13
43	Towards rational design of high performance Ni-rich layered oxide cathodes: The interplay of borate-doping and excess lithium. Journal of Power Sources, 2019, 431, 40-47.	4.0	31
44	Sodium-based batteries: from critical materials to battery systems. Journal of Materials Chemistry A, 2019, 7, 9406-9431.	5.2	199
45	A novel metal-organic layered material with superior supercapacitive performance through ultrafast and reversible tetraethylammonium intercalation. Nano Energy, 2019, 59, 102-109.	8.2	26
46	Lithiophilic NiO hexagonal plates decorated Ni collector guiding uniform lithium plating for stable lithium metal anode. Journal of Materials Chemistry A, 2019, 7, 24262-24270.	5.2	44
47	Molybdenum and tungsten chalcogenides for lithium/sodium-ion batteries: Beyond MoS2. Journal of Energy Chemistry, 2019, 33, 100-124.	7.1	174
48	Nickel-iron layered double hydroxides and reduced graphene oxide composite with robust lithium ion adsorption ability for high-capacity energy storage systems. Electrochimica Acta, 2019, 296, 190-197.	2.6	42
49	High Ion Conducting Solid Composite Electrolytes with Enhanced Interfacial Compatibility for Lithium Metal Batteries. ChemElectroChem, 2019, 6, 904-910.	1.7	17
50	A cathode for Li-ion batteries made of vanadium oxide on vertically aligned carbon nanotube arrays/graphene foam. Chemical Engineering Journal, 2019, 359, 1668-1676.	6.6	25
51	Antimony Nanorod Encapsulated in Cross-Linked Carbon for High-Performance Sodium Ion Battery Anodes. Nano Letters, 2019, 19, 538-544.	4.5	113
52	Challenges and recent progress in the design of advanced electrode materials for rechargeable Mg batteries. Energy Storage Materials, 2019, 20, 118-138.	9.5	104
53	Stable heteroepitaxial interface of Li-rich layered oxide cathodes with enhanced lithium storage. Energy Storage Materials, 2019, 21, 69-76.	9.5	53
54	Unravelling the reaction chemistry and degradation mechanism in aqueous Zn/MnO ₂ rechargeable batteries. Journal of Materials Chemistry A, 2018, 6, 5733-5739.	5.2	182

#	Article	IF	CITATIONS
55	Robust pseudo-capacitive Li-12 battery enabled by catalytic, adsorptive N-doped graphene interlayer. Energy Storage Materials, 2018, 14, 129-135.	9.5	67
56	High Ionâ€Conducting Solid‣tate Composite Electrolytes with Carbon Quantum Dot Nanofillers. Advanced Science, 2018, 5, 1700996.	5.6	141
57	Understanding the Improved Kinetics and Cyclability of a Li ₂ MnSiO ₄ Cathode with Calcium Substitution. Inorganic Chemistry, 2018, 57, 3223-3231.	1.9	14
58	Fabricating 3D ordered marcoporous Na2MnSiO4/C with hierarchical pores for fast sodium storage. Electrochimica Acta, 2018, 269, 694-699.	2.6	13
59	Study of the thermal properties during the cyclic process of lithium ion power batteries using the electrochemical-thermal coupling model. Applied Thermal Engineering, 2018, 137, 11-22.	3.0	48
60	A star-shaped solid composite electrolyte containing multifunctional moieties with enhanced electrochemical properties for all solid-state lithium batteries. Journal of Membrane Science, 2018, 552, 107-114.	4.1	42
61	S-doped carbon@TiO2 to store Li+/Na+ with high capacity and long life-time. Energy Storage Materials, 2018, 13, 215-222.	9.5	52
62	Crystallographic Habit Tuning of Li ₂ MnSiO ₄ Nanoplates for High-Capacity Lithium Battery Cathodes. ACS Applied Materials & Interfaces, 2018, 10, 6309-6316.	4.0	8
63	Oxygen-deficient anatase TiO ₂ @C nanospindles with pseudocapacitive contribution for enhancing lithium storage. Journal of Materials Chemistry A, 2018, 6, 4013-4022.	5.2	206
64	Quasi-reversible conversion reaction of CoSe ₂ /nitrogen-doped carbon nanofibers towards long-lifetime anode materials for sodium-ion batteries. Journal of Materials Chemistry A, 2018, 6, 7088-7098.	5.2	117
65	Flexible WS ₂ @CNFs Membrane Electrode with Outstanding Lithium Storage Performance Derived from Capacitive Behavior. Advanced Materials Interfaces, 2018, 5, 1701080.	1.9	25
66	Growth of SnO2 Nanoflowers on N-doped Carbon Nanofibers as Anode for Li- and Na-ion Batteries. Nano-Micro Letters, 2018, 10, 21.	14.4	141
67	Tailoring alternating heteroepitaxial nanostructures in Na-ion layered oxide cathodes via an in-situ composition modulation route. Nano Energy, 2018, 44, 336-344.	8.2	36
68	Highly Fluoro-Substituted Covalent Organic Framework and Its Application in Lithium–Sulfur Batteries. ACS Applied Materials & Interfaces, 2018, 10, 42233-42240.	4.0	127
69	Improving the Electrochemical Properties of the Manganese-Based P3 Phase by Multiphasic Intergrowth. Inorganic Chemistry, 2018, 57, 15584-15591.	1.9	19
70	Enhancing the Structural Stability of Ni-Rich Layered Oxide Cathodes with a Preformed Zr-Concentrated Defective Nanolayer. ACS Applied Materials & Interfaces, 2018, 10, 39599-39607.	4.0	78
71	Atomic Observation on Alternating Heteroepitaxial Nanostructures in Na-ion Layered Oxide Cathodes. Microscopy and Microanalysis, 2018, 24, 1542-1543.	0.2	0
72	Layered tin sulfide and selenide anode materials for Li- and Na-ion batteries. Journal of Materials Chemistry A, 2018, 6, 12185-12214.	5.2	245

#	Article	IF	CITATIONS
73	Roles of Coherent Interfaces on Electrochemical Performance of Sodium Layered Oxide Cathodes. Chemistry of Materials, 2018, 30, 4728-4737.	3.2	32
74	Electrochemical Property–Structure Correlation for Ni-Based Layered Na-Ion Cathodes. ACS Applied Materials & Interfaces, 2018, 10, 28719-28725.	4.0	18
75	Tuning anisotropic ion transport in mesocrystalline lithium orthosilicate nanostructures with preferentially exposed facets. NPG Asia Materials, 2018, 10, 606-617.	3.8	18
76	Cross-Linked Nanohybrid Polymer Electrolytes With POSS Cross-Linker for Solid-State Lithium Ion Batteries. Frontiers in Chemistry, 2018, 6, 186.	1.8	20
77	Morphological evolution and kinetic enhancement of Li2FexMn1-xSiO4/C cathodes for Li-ion battery. Progress in Natural Science: Materials International, 2018, 28, 535-541.	1.8	0
78	Improving the electrochemical cyclability of lithium manganese orthosilicate through the pillaring effects of gradient Na substitution. Journal of Power Sources, 2017, 349, 18-26.	4.0	16
79	Understanding the Enhanced Kinetics of Gradient-Chemical-Doped Lithium-Rich Cathode Material. ACS Applied Materials & Interfaces, 2017, 9, 20519-20526.	4.0	41
80	Carbon Anode Materials for Advanced Sodiumâ€lon Batteries. Advanced Energy Materials, 2017, 7, 1602898.	10.2	858
81	Synergistic effect of cross-linked carbon nanosheet frameworks and Sb on the enhancement of sodium storage performances. New Journal of Chemistry, 2017, 41, 13724-13731.	1.4	12
82	Extrinsic pseudocapacitve Li-ion storage of SnS anode via lithiation-induced structural optimization on cycling. Journal of Power Sources, 2017, 366, 1-8.	4.0	54
83	Intrinsic conductivity optimization of bi-metallic nickel cobalt selenides toward superior-rate Na-ion storage. Materials Chemistry Frontiers, 2017, 1, 2656-2663.	3.2	30
84	Influence of deformation microstructure on the precipitation behaviors of an Al-4Mg-0.3Cu alloy. Journal of Alloys and Compounds, 2017, 695, 2238-2245.	2.8	16
85	Boosting sodium-ion storage performance of MoSe2@C electrospinning nanofibers by embedding graphene nanosheets. Journal of Alloys and Compounds, 2017, 727, 1280-1287.	2.8	56
86	Hierarchical Nanocomposite of Hollow N-Doped Carbon Spheres Decorated with Ultrathin WS ₂ Nanosheets for High-Performance Lithium-Ion Battery Anode. ACS Applied Materials & Interfaces, 2016, 8, 18841-18848.	4.0	131
87	Tufted NiCo2O4 Nanoneedles Grown on Carbon Nanofibers with advanced electrochemical property for Lithium Ion Batteries. Electrochimica Acta, 2016, 222, 1878-1886.	2.6	42
88	Li ⁺ -conductive Li ₂ SiO ₃ stabilized Li-rich layered oxide with an in situ formed spinel nano-coating layer: toward enhanced electrochemical performance for lithium-ion batteries. RSC Advances, 2016, 6, 34245-34253.	1.7	29
89	Cross-linked branching nanohybrid polymer electrolyte with monodispersed TiO2 nanoparticles for high performance lithium-ion batteries. Journal of Power Sources, 2016, 317, 103-111.	4.0	71
90	Three-dimensionally ordered macroporous Li2FeSiO4/C composite as a high performance cathode for advanced lithium ion batteries. Journal of Power Sources, 2016, 329, 297-304.	4.0	23

#	Article	IF	CITATIONS
91	Manipulating the Crystalline Structure and Electrochemical Performance of a Dilithium Manganese Silicate Cathode Material by Polyanion Doping. ChemElectroChem, 2016, 3, 1805-1812.	1.7	5
92	Hierarchically porous Ni monolith@branch-structured NiCo2O4 for high energy density supercapacitors. Progress in Natural Science: Materials International, 2016, 26, 276-282.	1.8	12
93	Toward Dendrite-Free Lithium Deposition via Structural and Interfacial Synergistic Effects of 3D Graphene@Ni Scaffold. ACS Applied Materials & Interfaces, 2016, 8, 26091-26097.	4.0	152
94	Carbon Coated SnS/SnO ₂ Heterostructures Wrapping on CNFs as an Improved-Performance Anode for Li-Ion Batteries: Lithiation-Induced Structural Optimization upon Cycling. ACS Applied Materials & Interfaces, 2016, 8, 30256-30263.	4.0	68
95	Roles of surface structure and chemistry on electrochemical processes in lithium-rich layered oxide cathodes. Nano Energy, 2016, 30, 580-602.	8.2	61
96	The Effect of Boron Doping on Structure and Electrochemical Performance of Lithium-Rich Layered Oxide Materials. ACS Applied Materials & amp; Interfaces, 2016, 8, 18008-18017.	4.0	68
97	Hollow LDH nanowires as excellent adsorbents for organic dye. Journal of Alloys and Compounds, 2016, 687, 499-505.	2.8	42
98	Dodecahedron-Shaped Porous Vanadium Oxide and Carbon Composite for High-Rate Lithium Ion Batteries. ACS Applied Materials & Interfaces, 2016, 8, 17303-17311.	4.0	43
99	Surface Structural Transition Induced by Gradient Polyanionâ€Doping in Liâ€Rich Layered Oxides: Implications for Enhanced Electrochemical Performance. Advanced Functional Materials, 2016, 26, 4760-4767.	7.8	151
100	Rational design and preparation of few-layered MoSe ₂ nanosheet@C/TiO ₂ nanobelt heterostructures with superior lithium storage performance. RSC Advances, 2016, 6, 23161-23168.	1.7	47
101	Solid polymer electrolyte membranes based on organic/inorganic nanocomposites with star-shaped structure for high performance lithium ion battery. Journal of Membrane Science, 2016, 509, 138-148.	4.1	100
102	Composite electrolyte membranes incorporating viscous copolymers with cellulose for high performance lithium-ion batteries. Journal of Membrane Science, 2016, 497, 259-269.	4.1	66
103	Amorphous carbon framework stabilized SnO ₂ porous nanowires as high performance Li-ion battery anode materials. RSC Advances, 2015, 5, 49926-49932.	1.7	33
104	A Li-rich Layered@Spinel@Carbon heterostructured cathode material for high capacity and high rate lithium-ion batteries fabricated via an in situ synchronous carbonization-reduction method. Journal of Materials Chemistry A, 2015, 3, 3995-4003.	5.2	135
105	Novel solid metal–organic self-propagation combustion for controllable synthesis of hierarchically porous metal monoliths. Journal of Materials Chemistry A, 2015, 3, 10179-10182.	5.2	7
106	Solvent-Controlled Synthesis of NiO–CoO/Carbon Fiber Nanobrushes with Different Densities and Their Excellent Properties for Lithium Ion Storage. ACS Applied Materials & Interfaces, 2015, 7, 21703-21711.	4.0	63
107	Hierarchical porous Co ₃ O ₄ nanosheet arrays directly grown on carbon cloth by an electrochemical route for high performance Li-ion batteries. New Journal of Chemistry, 2014, 38, 2250-2253.	1.4	35
108	Controlled synthesis of platy potassium titanates from potassium magnesium titanate. RSC Advances, 2013, 3, 8326.	1.7	10

#	Article	IF	CITATIONS
109	Graphene-Based Composites as Cathode Materials for Lithium Ion Batteries. Journal of Nanomaterials, 2013, 2013, 1-8.	1.5	15
110	Liquid Metal Batteries: Past, Present, and Future. Chemical Reviews, 2013, 113, 2075-2099.	23.0	413
111	Template-free electrosynthesis of crystalline germanium nanowires from solid germanium oxide in molten CaCl2–NaCl. Electrochimica Acta, 2013, 102, 369-374.	2.6	32
112	Rational design of Au–NiO hierarchical structures with enhanced rate performance for supercapacitors. Journal of Materials Chemistry A, 2013, 1, 7023.	5.2	50
113	Ultrathin Porous NiCo ₂ O ₄ Nanosheet Arrays on Flexible Carbon Fabric for High-Performance Supercapacitors. ACS Applied Materials & Interfaces, 2013, 5, 7405-7409.	4.0	259
114	Weak magnetic field-enhanced glass formation in non-ferromagnetic Al-based alloys. Applied Physics Letters, 2012, 100, 231905.	1.5	5
115	Thermodynamic properties of calcium–bismuth alloys determined by emf measurements. Electrochimica Acta, 2012, 60, 154-162.	2.6	52
116	Oriented silver oxidenanostructures synthesized through a template-free electrochemical route. Journal of Materials Chemistry, 2011, 21, 432-438.	6.7	103
117	Recycling ZnTe, CdTe, and Other Compound Semiconductors by Ambipolar Electrolysis. Journal of the American Chemical Society, 2011, 133, 19971-19975.	6.6	31
118	Manganese oxide-based materials as electrochemical supercapacitor electrodes. Chemical Society Reviews, 2011, 40, 1697-1721.	18.7	2,161
119	Dense and long carbon nanotube arrays decorated with Mn3O4 nanoparticles for electrodes of electrochemical supercapacitors. Carbon, 2011, 49, 1225-1234.	5.4	98
120	Morphology evolution in anodically electrodeposited manganese oxide nanostructures for electrochemical supercapacitor applications—Effect of supersaturation ratio. Electrochimica Acta, 2011, 56, 1619-1628.	2.6	75
121	Strong correlation between the cation ordering and magnetic properties of anodically electrodeposited Mn–Co–O nanocrystals. Journal of Materials Science, 2010, 45, 6824-6829.	1.7	1
122	Oxidation Behavior of Ni–Cr–Fe-Based Alloys: Effect of Alloy Microstructure and Silicon Content. Oxidation of Metals, 2010, 73, 207-218.	1.0	21
123	Lengthening and thickening of multi-walled carbon nanotube arrays grown by chemical vapor deposition in the presence and absence of water. Carbon, 2010, 48, 2782-2791.	5.4	14
124	Study of Growth Kinetics of Ultra-Long Carbon Nanotube Arrays through Wall Number Statistical Investigation. Materials Research Society Symposia Proceedings, 2009, 1204, 1.	0.1	0
125	Oxidation resistance and electrical properties of anodically electrodeposited Mn–Co oxide coatings for solid oxide fuel cell interconnect applications. Journal of Power Sources, 2009, 186, 428-434.	4.0	59
126	Electrochemical cyclability mechanism for MnO2 electrodes utilized as electrochemical supercapacitors. Journal of Power Sources, 2009, 186, 543-550.	4.0	132

#	Article	IF	CITATIONS
127	Improved electrochemical impedance response induced by morphological and structural evolution in nanocrystalline MnO2 electrodes. Electrochimica Acta, 2009, 54, 2271-2275.	2.6	59
128	Effect of catalyst particle interspacing on the growth of millimeter-scale carbon nanotube arrays by catalytic chemical vapor deposition. Carbon, 2009, 47, 3441-3451.	5.4	31
129	Electrochemical study of codeposition of Al particle—Nanocrystalline Ni/Cu composite coatings. Electrochimica Acta, 2008, 54, 415-420.	2.6	33
130	Phase-Controlled Synthesis of MnO2 Nanocrystals by Anodic Electrodeposition: Implications for High-Rate Capability Electrochemical Supercapacitors. Journal of Physical Chemistry C, 2008, 112, 15075-15083.	1.5	125
131	Rock Saltâ^'Spinel Structural Transformation in Anodically Electrodeposited Mnâ^'Coâ^'O Nanocrystals. Chemistry of Materials, 2008, 20, 1941-1947.	3.2	167
132	Anodic Electrodeposition of Nanocrystalline Coatings in the Mnâ^'Coâ^'O System. Chemistry of Materials, 2007, 19, 2816-2822.	3.2	33
133	Defective Rock-Salt Structure in Anodically Electrodeposited Mnâ^'Coâ^'O Nanocrystals. Journal of Physical Chemistry C, 2007, 111, 10398-10403.	1.5	28
134	Microstructures and mechanical behavior of PM Ti-Mo alloy. Central South University, 2003, 10, 81-86.	0.5	23
135	Effect of Fe addition on sintering behaviour of titanium powder. Powder Metallurgy, 2003, 46, 246-250.	0.9	67
136	Upgrading Electrode/Electrolyte Interphases via Polyamide-Based Quasi-Solid Electrolyte for Long-Life Nickel-Rich Lithium Metal Batteries. ACS Energy Letters, 0, , 1280-1289.	8.8	49
137	Electronic-Structure Tuning of Honeycomb Layered Oxide Cathodes for Superior Performance. SSRN Electronic Journal, 0, , .	0.4	1
138	Anodic Electrodeposition of Mn-Co-O Spinel Coatings on Stainless Steel Substrates. , 0, , 255-266.		0
139	Advances in the structure and composition design of zinc anodes for high performance zinc ion batteries. Sustainable Energy and Fuels, 0, , .	2.5	5