William H Matsui

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3874193/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Wholeâ€exome sequencing identifies functional classes of gene mutations associated with bone marrow failure in pediatric Fanconi Anemia patients. European Journal of Haematology, 2021, 107, 293-294.	2.2	0
2	Hedgehog Signaling in Myeloid Malignancies. Cancers, 2021, 13, 4888.	3.7	11
3	Abstract PR-009: Targeting the sterol regulatory element-binding protein pathway in pancreatic ductal adenocarcinoma. , 2021, , .		Ο
4	Abstract PR-004: Inhibition of focal adhesion kinase (FAK) improves pancreatic ductal adenocarcinoma's response to immunotherapy by targeting cancer stem cells (CSCs). Cancer Research, 2021, 81, PR-004-PR-004.	0.9	2
5	Organotypic culture assays for murine and human primary and metastatic-site tumors. Nature Protocols, 2020, 15, 2413-2442.	12.0	40
6	CD229 CAR T cells eliminate multiple myeloma and tumor propagating cells without fratricide. Nature Communications, 2020, 11, 798.	12.8	43
7	Biphenotypic Differentiation of Pancreatic Cancer in 3-Dimensional Culture. Pancreas, 2019, 48, 1225-1231.	1.1	2
8	Direct Interactions With Cancer-Associated Fibroblasts Lead to Enhanced Pancreatic Cancer Stem Cell Function. Pancreas, 2019, 48, 329-334.	1.1	44
9	Hedgehog/GLI1 activation leads to leukemic transformation of myelodysplastic syndrome in vivo and GLI1 inhibition results in antitumor activity. Oncogene, 2019, 38, 687-698.	5.9	21
10	Development of Grade II Acute Graft-versus-Host Disease Is Associated with Improved Survival after Myeloablative HLA-Matched Bone Marrow Transplantation using Single-Agent Post-Transplant Cyclophosphamide. Biology of Blood and Marrow Transplantation, 2019, 25, 1128-1135.	2.0	38
11	IQCAP1 Maintains Pancreatic Ductal Adenocarcinoma Clonogenic Growth and Metastasis. Pancreas, 2019, 48, 94-98.	1.1	6
12	Ezrin Promotes Stem Cell Properties in Pancreatic Ductal Adenocarcinoma. Molecular Cancer Research, 2019, 17, 929-936.	3.4	11
13	Requirement of Sterol Regulatory Elementâ€Binding Protein Pathway in Pancreatic Ductal Adenocarcinoma. FASEB Journal, 2019, 33, .	0.5	0
14	Shortened-Duration Tacrolimus after Nonmyeloablative, HLA-Haploidentical Bone Marrow Transplantation. Biology of Blood and Marrow Transplantation, 2018, 24, 1022-1028.	2.0	29
15	Haploidentical Bone Marrow Transplantation with Post-Transplant Cyclophosphamide Using Non–First-Degree Related Donors. Biology of Blood and Marrow Transplantation, 2018, 24, 1099-1102.	2.0	61
16	Grade II Acute Graft-versus-Host Disease and Higher Nucleated Cell Graft Dose Improve Progression-Free Survival after HLA-Haploidentical Transplant with Post-Transplant Cyclophosphamide. Biology of Blood and Marrow Transplantation, 2018, 24, 343-352.	2.0	61
17	Anti-CD19 CAR T cells with high-dose melphalan and autologous stem cell transplantation for refractory multiple myeloma. JCI Insight, 2018, 3, .	5.0	140
18	Early Fever after Haploidentical Bone Marrow Transplantation Correlates with Class II HLA-Mismatching and Myeloablation but Not Outcomes. Biology of Blood and Marrow Transplantation, 2018, 24, 2056-2064.	2.0	32

#	Article	IF	CITATIONS
19	Comparable composite endpoints after HLA-matched and HLA-haploidentical transplantation with post-transplantation cyclophosphamide. Haematologica, 2017, 102, 391-400.	3.5	152
20	Low immunosuppressive burden after HLA-matched related or unrelated BMT using posttransplantation cyclophosphamide. Blood, 2017, 129, 1389-1393.	1.4	69
21	Allogeneic Blood or Marrow Transplantation with Post-Transplantation Cyclophosphamide as Graft-versus-Host Disease Prophylaxis in Multiple Myeloma. Biology of Blood and Marrow Transplantation, 2017, 23, 1903-1909.	2.0	14
22	Major Histocompatibility Mismatch and Donor Choice for Second Allogeneic Bone Marrow Transplantation. Biology of Blood and Marrow Transplantation, 2017, 23, 1887-1894.	2.0	42
23	Inhibition of Pancreatic Cancer Cell-Induced Paracrine Hedgehog Signaling by Liver X Receptor Agonists and Oxy16, a Naturally Occurring Oxysterol. Journal of Cellular Biochemistry, 2017, 118, 499-509.	2.6	12
24	Prospective study of nonmyeloablative, HLA-mismatched unrelated BMT with high-dose posttransplantation cyclophosphamide. Blood Advances, 2017, 1, 288-292.	5.2	84
25	The extracellular matrix and focal adhesion kinase signaling regulate cancer stem cell function in pancreatic ductal adenocarcinoma. PLoS ONE, 2017, 12, e0180181.	2.5	68
26	Cancer stem cell signaling pathways. Medicine (United States), 2016, 95, S8-S19.	1.0	227
27	IQCAP1 Scaffold–MAP Kinase Interactions Enhance Multiple Myeloma Clonogenic Growth and Self-Renewal. Molecular Cancer Therapeutics, 2016, 15, 2733-2739.	4.1	10
28	Differentiation therapy in poor risk myeloid malignancies: Results of companion phase II studies. Leukemia Research, 2016, 49, 90-97.	0.8	11
29	Donor cell leukemia arising from clonal hematopoiesis after bone marrow transplantation. Leukemia, 2016, 30, 1916-1920.	7.2	79
30	Therapeutic drug monitoring for either oral or intravenous busulfan when combined with pre- and post-transplantation cyclophosphamide. Leukemia and Lymphoma, 2016, 57, 666-675.	1.3	11
31	Hedgehog and retinoid signaling alters multiple myeloma microenvironment and generates bortezomib resistance. Journal of Clinical Investigation, 2016, 126, 4460-4468.	8.2	35
32	Risk-stratified outcomes of nonmyeloablative HLA-haploidentical BMT with high-dose posttransplantation cyclophosphamide. Blood, 2015, 125, 3024-3031.	1.4	259
33	Adoptive transfer of activated marrow-infiltrating lymphocytes induces measurable antitumor immunity in the bone marrow in multiple myeloma. Science Translational Medicine, 2015, 7, 288ra78.	12.4	104
34	Integration of Hedgehog and mutant FLT3 signaling in myeloid leukemia. Science Translational Medicine, 2015, 7, 291ra96.	12.4	50
35	Phase II Study of Nonmyeloablative Allogeneic Bone Marrow Transplantation for B Cell Lymphoma with Post-Transplantation Rituximab and Donor Selection Based First on Non-HLA Factors. Biology of Blood and Marrow Transplantation, 2015, 21, 2115-2122.	2.0	26
36	Outcomes of Nonmyeloablative HLA-Haploidentical Blood or Marrow Transplantation With High-Dose Post-Transplantation Cyclophosphamide in Older Adults. Journal of Clinical Oncology, 2015, 33, 3152-3161.	1.6	215

#	Article	IF	CITATIONS
37	Activation of Liver X Receptors Inhibits Hedgehog Signaling, Clonogenic Growth, and Self-Renewal in Multiple Myeloma. Molecular Cancer Therapeutics, 2014, 13, 1873-1881.	4.1	27
38	Associations between serum folate and vitamin D levels and incident mouse sensitization in adults. Journal of Allergy and Clinical Immunology, 2014, 133, 399-404.	2.9	11
39	DCLK1 Marks a Morphologically Distinct Subpopulation of Cells With Stem Cell Properties in Preinvasive Pancreatic Cancer. Gastroenterology, 2014, 146, 245-256.	1.3	277
40	Granulocyte-macrophage colony stimulating factor (GM-CSF) enhances the clinical responses to interferon-α (IFN) in newly diagnosed chronic myeloid leukemia (CML). Leukemia Research, 2014, 38, 886-890.	0.8	8
41	Growth differentiating factor 15 enhances the tumor-initiating and self-renewal potential of multiple myeloma cells. Blood, 2014, 123, 725-733.	1.4	59
42	Single-agent GVHD prophylaxis with posttransplantation cyclophosphamide after myeloablative, HLA-matched BMT for AML, ALL, and MDS. Blood, 2014, 124, 3817-3827.	1.4	165
43	NRF2-mediated Notch pathway activation enhances hematopoietic reconstitution following myelosuppressive radiation. Journal of Clinical Investigation, 2014, 124, 730-741.	8.2	95
44	Inhibiting Oncogenic RAS in Multiple Myeloma By Targeting Scaffold-ERK Interactions. Blood, 2014, 124, 2089-2089.	1.4	0
45	Targeting PYK2 Mediates Microenvironment-Specific Myeloma Cell Death. Blood, 2014, 124, 2081-2081.	1.4	7
46	Relationships between folate and inflammatory features of asthma. Journal of Allergy and Clinical Immunology, 2013, 131, 918-920.e6.	2.9	16
47	Single Copies of Mutant <i>KRAS</i> and Mutant <i>PIK3CA</i> Cooperate in Immortalized Human Epithelial Cells to Induce Tumor Formation. Cancer Research, 2013, 73, 3248-3261.	0.9	33
48	A bis-Benzylidine Piperidone Targeting Proteasome Ubiquitin Receptor RPN13/ADRM1 as a Therapy for Cancer. Cancer Cell, 2013, 24, 791-805.	16.8	137
49	Absence of Post-Transplantation Lymphoproliferative Disorder after Allogeneic Blood or Marrow Transplantation Using Post-Transplantation Cyclophosphamide as Graft-versus-Host Disease Prophylaxis. Biology of Blood and Marrow Transplantation, 2013, 19, 1514-1517.	2.0	103
50	Cancer stem cells in lung cancer: Evidence and controversies. Respirology, 2013, 18, 757-764.	2.3	120
51	Brief intensive therapy for older adults with newly diagnosed Burkitt or atypical Burkitt lymphoma/leukemia. Leukemia and Lymphoma, 2013, 54, 483-490.	1.3	13
52	Tumorigenic potential of circulating prostate tumor cells. Oncotarget, 2013, 4, 413-421.	1.8	32
53	A DNA hypermethylation module for the stem/progenitor cell signature of cancer. Genome Research, 2012, 22, 837-849.	5.5	236
54	Cancer stem cells. Current Opinion in Oncology, 2012, 24, 170-175.	2.4	9

#	Article	IF	CITATIONS
55	Bruton tyrosine kinase inhibition is a novel therapeutic strategy targeting tumor in the bone marrow microenvironment in multiple myeloma. Blood, 2012, 120, 1877-1887.	1.4	162
56	Phase 2 study of rituximab-ABVD in classical Hodgkin lymphoma. Blood, 2012, 119, 4129-4132.	1.4	67
57	The Gamma Secretase Inhibitor MRK-003 Attenuates Pancreatic Cancer Growth in Preclinical Models. Molecular Cancer Therapeutics, 2012, 11, 1999-2009.	4.1	79
58	Molecular Pathways: The Hedgehog Signaling Pathway in Cancer. Clinical Cancer Research, 2012, 18, 4883-4888.	7.0	143
59	Chloroquine Improves Survival and Hematopoietic Recovery After Lethal Low-Dose-Rate Radiation. International Journal of Radiation Oncology Biology Physics, 2012, 84, 800-806.	0.8	13
60	Heterogeneity and Targeting of Pancreatic Cancer Stem Cells. Clinical Cancer Research, 2012, 18, 4277-4284.	7.0	65
61	Autologous Stem Cell Transplantation and Multiple Myeloma Cancer Stem Cells. Biology of Blood and Marrow Transplantation, 2012, 18, S27-S32.	2.0	21
62	Hedgehog pathway as a drug target: Smoothened inhibitors in development. OncoTargets and Therapy, 2012, 5, 47.	2.0	126
63	Transient Low Doses of DNA-Demethylating Agents Exert Durable Antitumor Effects on Hematological and Epithelial Tumor Cells. Cancer Cell, 2012, 21, 430-446.	16.8	564
64	Biological and clinical relevance of stem cells in pancreatic adenocarcinoma. Journal of Gastroenterology and Hepatology (Australia), 2012, 27, 15-18.	2.8	45
65	Changing Paradigms in Cancer Clinical Trials. , 2012, , 227-246.		0
66	High-dose cyclophosphamide and rituximab without stem cell transplant: a feasibility study for low grade B-cell, transformed and mantle cell lymphomas. Leukemia and Lymphoma, 2011, 52, 2076-2081.	1.3	8
67	Perspective: A model disease. Nature, 2011, 480, S58-S58.	27.8	10
68	The redox-sensitive transcription factor Nrf2 regulates murine hematopoietic stem cell survival independently of ROS levels. Blood, 2011, 118, 6572-6579.	1.4	100
69	Development and Maintenance of Cancer Stem Cells under Chronic Inflammation. Journal of Nippon Medical School, 2011, 78, 138-145.	0.9	32
70	Concise Review: Emerging Concepts in Clinical Targeting of Cancer Stem Cells. Stem Cells, 2011, 29, 883-887.	3.2	80
71	Characterization of chronic myeloid leukemia stem cells. American Journal of Hematology, 2011, 86, 31-37.	4.1	78
72	Differentiation therapy in poor risk myeloid malignancies: Results of a dose finding study of the combination bryostatin-1 and GM-CSF. Leukemia Research, 2011, 35, 87-94.	0.8	19

#	Article	IF	CITATIONS
73	Cyclin-dependent kinase inhibitor Dinaciclib (SCH727965) inhibits pancreatic cancer growth and progression in murine xenograft models. Cancer Biology and Therapy, 2011, 12, 598-609.	3.4	103
74	Phase I/II Study of Marrow Infiltrating Lymphocytes (MILs) Generates Measurable Myeloma-Specific Immunity in the Autologous Stem Cell Transplant (SCT) Setting. Blood, 2011, 118, 997-997.	1.4	1
75	The TGF- β Family Member Growth Differentiation Factor 15 (GDF15) Regulates the Self-Renewal of Multiple Myeloma Cancer Stem Cells. Blood, 2011, 118, 2954-2954.	1.4	0
76	Isolation of Stem Cells from Human Pancreatic Cancer Xenografts. Journal of Visualized Experiments, 2010, , .	0.3	32
77	High-dose cyclophosphamide for severe aplastic anemia: long-term follow-up. Blood, 2010, 115, 2136-2141.	1.4	107
78	Gli1 regulates the proliferation and differentiation of HSCs and myeloid progenitors. Blood, 2010, 115, 2391-2396.	1.4	102
79	High-dose cyclophosphamide as single-agent, short-course prophylaxis of graft-versus-host disease. Blood, 2010, 115, 3224-3230.	1.4	346
80	Mantle cell lymphoma activation enhances bortezomib sensitivity. Blood, 2010, 116, 4185-4191.	1.4	35
81	Prognostic Significance of Tumorigenic Cells With Mesenchymal Features in Pancreatic Adenocarcinoma. Journal of the National Cancer Institute, 2010, 102, 340-351.	6.3	392
82	Cancer-Related Epigenome Changes Associated with Reprogramming to Induced Pluripotent Stem Cells. Cancer Research, 2010, 70, 7662-7673.	0.9	71
83	A Combination of DR5 Agonistic Monoclonal Antibody with Gemcitabine Targets Pancreatic Cancer Stem Cells and Results in Long-term Disease Control in Human Pancreatic Cancer Model. Molecular Cancer Therapeutics, 2010, 9, 2582-2592.	4.1	83
84	Nonmyeloablative HLA-Haploidentical Bone Marrow Transplantation with High-Dose Posttransplantation Cyclophosphamide: Effect of HLA Disparity on Outcome. Biology of Blood and Marrow Transplantation, 2010, 16, 482-489.	2.0	260
85	Tumor-Initiating Cells Are Rare in Many Human Tumors. Cell Stem Cell, 2010, 7, 279-282.	11.1	205
86	Hypoxia Increases the Expression of Stem-Cell Markers and Promotes Clonogenicity in Glioblastoma Neurospheres. American Journal of Pathology, 2010, 177, 1491-1502.	3.8	306
87	Targeting Hedgehog — a Cancer Stem Cell Pathway. Clinical Cancer Research, 2010, 16, 3130-3140.	7.0	436
88	Telomerase Inhibition Targets Clonogenic Multiple Myeloma Cells through Telomere Length-Dependent and Independent Mechanisms. PLoS ONE, 2010, 5, e12487.	2.5	63
89	Self-Renewal of Acute Lymphocytic Leukemia Cells Is Limited by the Hedgehog Pathway Inhibitors Cyclopamine and IPI-926. PLoS ONE, 2010, 5, e15262.	2.5	75
90	Hedgehog Signaling in Hematopoiesis. Critical Reviews in Eukaryotic Gene Expression, 2010, 20, 129-139.	0.9	27

#	Article	IF	CITATIONS
91	Multiple Myeloma: A Paradigm for Translation of the Cancer Stem Cell Hypothesis. Anti-Cancer Agents in Medicinal Chemistry, 2010, 10, 116-120.	1.7	39
92	Origin of the Myeloma Stem Cell. Blood, 2010, 116, SCI-4-SCI-4.	1.4	0
93	Achaete-Scute Complex Homologue 1 Regulates Tumor-Initiating Capacity in Human Small Cell Lung Cancer. Cancer Research, 2009, 69, 845-854.	0.9	158
94	GLI1 Is a Direct Transcriptional Target of EWS-FLI1 Oncoprotein. Journal of Biological Chemistry, 2009, 284, 9074-9082.	3.4	146
95	Ligand-dependent Notch Signaling Is Involved in Tumor Initiation and Tumor Maintenance in Pancreatic Cancer. Clinical Cancer Research, 2009, 15, 2291-2301.	7.0	161
96	A direct pancreatic cancer xenograft model as a platform for cancer stem cell therapeutic development. Molecular Cancer Therapeutics, 2009, 8, 310-314.	4.1	250
97	Glycosylphosphatidylinositol-anchored protein deficiency confers resistance to apoptosis in PNH. Experimental Hematology, 2009, 37, 42-51.e1.	0.4	34
98	Urothelial carcinoma: Stem cells on the edge. Cancer and Metastasis Reviews, 2009, 28, 291-304.	5.9	54
99	Cancer stem cells: controversies in multiple myeloma. Journal of Molecular Medicine, 2009, 87, 1079-1085.	3.9	31
100	<i>DNER</i> , an Epigenetically Modulated Gene, Regulates Glioblastoma-Derived Neurosphere Cell Differentiation and Tumor Propagation. Stem Cells, 2009, 27, 1473-1486.	3.2	84
101	Differentiation of a Highly Tumorigenic Basal Cell Compartment in Urothelial Carcinoma. Stem Cells, 2009, 27, 1487-1495.	3.2	117
102	Cancer stem cells in multiple myeloma. Cancer Letters, 2009, 277, 1-7.	7.2	73
103	Smoothening the Controversial Role of Hedgehog in Hematopoiesis. Cell Stem Cell, 2009, 4, 470-471.	11.1	11
104	Higher serum folate levels are associated with a lower risk of atopy and wheeze. Journal of Allergy and Clinical Immunology, 2009, 123, 1253-1259.e2.	2.9	90
105	Circulating clonotypic B cells in classic Hodgkin lymphoma. Blood, 2009, 113, 5920-5926.	1.4	159
106	Response: Hodgkin lymphoma stem cells. Blood, 2009, 114, 3971-3972.	1.4	3
107	Myeloablative allogeneic bone marrow transplant using T cell depleted allografts followed by post-transplant GM-CSF in high-risk myelodysplastic syndromes. Leukemia Research, 2008, 32, 1439-1447.	0.8	18
108	HLA-Haploidentical Bone Marrow Transplantation for Hematologic Malignancies Using Nonmyeloablative Conditioning and High-Dose, Posttransplantation Cyclophosphamide. Biology of Blood and Marrow Transplantation, 2008, 14, 641-650.	2.0	1,525

#	Article	IF	CITATIONS
109	Clonogenic Multiple Myeloma Progenitors, Stem Cell Properties, and Drug Resistance. Cancer Research, 2008, 68, 190-197.	0.9	495
110	An orally bioavailable small-molecule inhibitor of Hedgehog signaling inhibits tumor initiation and metastasis in pancreatic cancer. Molecular Cancer Therapeutics, 2008, 7, 2725-2735.	4.1	250
111	Multiple Myeloma Cancer Stem Cells. Journal of Clinical Oncology, 2008, 26, 2895-2900.	1.6	101
112	The multiple myeloma–associated MMSET gene contributes to cellular adhesion, clonogenic growth, and tumorigenicity. Blood, 2008, 111, 856-864.	1.4	137
113	Blockade of Hedgehog Signaling Inhibits Pancreatic Cancer Invasion and Metastases: A New Paradigm for Combination Therapy in Solid Cancers. Cancer Research, 2007, 67, 2187-2196.	0.9	647
114	Hedgehog signaling maintains a tumor stem cell compartment in multiple myeloma. Proceedings of the National Academy of Sciences of the United States of America, 2007, 104, 4048-4053.	7.1	460
115	Cancer Stem Cells: From Bench to Bedside. Biology of Blood and Marrow Transplantation, 2007, 13, 47-52.	2.0	18
116	Induction of Autologous Graft-versus-Host Disease: Results of a Randomized Prospective Clinical Trial in Patients with Poor Risk Lymphoma. Biology of Blood and Marrow Transplantation, 2007, 13, 1185-1191.	2.0	24
117	Therapeutic Implications of Leukemic Stem Cell Pathways. Clinical Cancer Research, 2007, 13, 6549-6554.	7.0	20
118	Cyclopamine-Mediated Hedgehog Pathway Inhibition Depletes Stem-Like Cancer Cells in Glioblastoma. Stem Cells, 2007, 25, 2524-2533.	3.2	578
119	Differentiation Therapy in AML. , 2007, , 293-312.		0
120	Hedgehog Signaling in Normal and Malignant Hematopoiesis Blood, 2007, 110, 3381-3381.	1.4	1
121	Aberrant Hedgehog Signaling Represents a Novel Therapeutic Target in B Cell Lymphomas Blood, 2007, 110, 3582-3582.	1.4	0
122	Notch Pathway Inhibition Depletes Stem-like Cells and Blocks Engraftment in Embryonal Brain Tumors. Cancer Research, 2006, 66, 7445-7452.	0.9	587
123	Graft-versus-Host Reactions and the Effectiveness of Donor Lymphocyte Infusions. Biology of Blood and Marrow Transplantation, 2006, 12, 414-421.	2.0	56
124	Strategies to eliminate cancer stem cells: Clinical implications. European Journal of Cancer, 2006, 42, 1293-1297.	2.8	52
125	The paradox of response and survival in cancer therapeutics. Blood, 2006, 107, 431-434.	1.4	146
126	Quantitative analysis of bone marrow CD34 cells in aplastic anemia and hypoplastic myelodysplastic syndromes. Leukemia, 2006, 20, 458-462.	7.2	71

#	Article	IF	CITATIONS
127	Cancer Stem Cell Targeting in Multiple Myeloma by GRN163L, a Novel and Potent Telomerase Inhibitor Blood, 2006, 108, 2540-2540.	1.4	13
128	Requirement for myeloid growth factors in the differentiation of acute promyelocytic leukaemia. British Journal of Haematology, 2005, 128, 853-862.	2.5	34
129	Effects of imatinib and interferon on primitive chronic myeloid leukaemia progenitors. British Journal of Haematology, 2005, 130, 373-381.	2.5	87
130	Activated Marrow-Infiltrating Lymphocytes Effectively Target Plasma Cells and Their Clonogenic Precursors. Cancer Research, 2005, 65, 2026-2034.	0.9	111
131	Do Neoplastic Stem Cells Underlie the Pathogenesis of Cutaneous Lymphomas?. Archives of Dermatology, 2005, 141, 641.	1.4	5
132	Differentiation Therapy for Poor Risk Myeloid Malignancies: Results of a Dose Finding Study of Bryostatin-1 (BRYO) + GM-CSF Blood, 2005, 106, 2792-2792.	1.4	2
133	Cancer Stem Cells: Are We Missing the Target?. Journal of the National Cancer Institute, 2004, 96, 583-585.	6.3	166
134	Enhanced Cytotoxicity of Rituximab Following Genetic and Biochemical Disruption of Glycosylphosphatidylinositol Anchored Proteins. Leukemia and Lymphoma, 2004, 45, 795-800.	1.3	16
135	Characterization of clonogenic multiple myeloma cells. Blood, 2004, 103, 2332-2336.	1.4	738
136	Association of Foxp3 regulatory gene expression with graft-versus-host disease. Blood, 2004, 104, 2187-2193.	1.4	284
137	Multiple Myeloma Stem Cells and Plasma Cells Display Distinct Drug Sensitivities Blood, 2004, 104, 2476-2476.	1.4	4
138	Anti-tumour activity of interferon-alpha in multiple myeloma: role of interleukin 6 and tumor cell differentiation. British Journal of Haematology, 2003, 121, 251-258.	2.5	38
139	The role of growth factors in the activity of pharmacological differentiation agents. Cell Growth & Differentiation: the Molecular Biology Journal of the American Association for Cancer Research, 2002, 13, 275-83.	0.8	12
140	Glucocorticoid Receptor Transcriptional Activity Determined by Spacing of Receptor and Nonreceptor DNA Sites. Journal of Biological Chemistry, 1998, 273, 30081-30085.	3.4	74