
Hytham Elbohy

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3874093/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Tin Selenide – Multi-Walled Carbon Nanotubes Hybrid Anodes for High Performance Lithium-Ion Batteries. Electrochimica Acta, 2016, 211, 720-725.	5.2	105
2	Tailored PEDOT:PSS hole transport layer for higher performance in perovskite solar cells: Enhancement of electrical and optical properties with improved morphology. Journal of Energy Chemistry, 2020, 44, 41-50.	12.9	105
3	Tuning Hole Transport Layer Using Urea for Highâ€Performance Perovskite Solar Cells. Advanced Functional Materials, 2019, 29, 1806740.	14.9	101
4	Electrospun carbon nanofibers with surface-attached platinum nanoparticles as cost-effective and efficient counter electrode for dye-sensitized solar cells. Nano Energy, 2015, 11, 550-556.	16.0	88
5	Self-recovery in Li-metal hybrid lithium-ion batteries <i>via</i> WO ₃ reduction. Nanoscale, 2018, 10, 15956-15966.	5.6	87
6	Environmentally Friendly Plasma-Treated PEDOT:PSS as Electrodes for ITO-Free Perovskite Solar Cells. ACS Applied Materials & Interfaces, 2017, 9, 35861-35870.	8.0	71
7	TiO2 coated urchin-like SnO2 microspheres for efficient dye-sensitized solar cells. Nano Research, 2014, 7, 1154-1163.	10.4	66
8	Graphene-beaded carbon nanofibers with incorporated Ni nanoparticles as efficient counter-electrode for dye-sensitized solar cells. Nano Energy, 2016, 22, 558-563.	16.0	66
9	Dye-sensitized solar cells based on spray-coated carbon nanofiber/TiO2 nanoparticle composite counter electrodes. Journal of Materials Chemistry A, 2014, 2, 11448.	10.3	61
10	Binder Free Hierarchical Mesoporous Carbon Foam for High Performance Lithium Ion Battery. Scientific Reports, 2017, 7, 1440.	3.3	56
11	Graphene-embedded carbon nanofibers decorated with Pt nanoneedles for high efficiency dye-sensitized solar cells. Journal of Materials Chemistry A, 2015, 3, 17721-17727.	10.3	47
12	Incorporation of plasmonic Au nanostars into photoanodes for high efficiency dye-sensitized solar cells. Journal of Materials Chemistry A, 2016, 4, 545-551.	10.3	47
13	Electrospun carbon nano-felt derived from alkali lignin for cost-effective counter electrodes of dye-sensitized solar cells. RSC Advances, 2016, 6, 11481-11487.	3.6	45
14	Creation of oxygen vacancies to activate WO ₃ for higher efficiency dye-sensitized solar cells. Sustainable Energy and Fuels, 2018, 2, 403-412.	4.9	45
15	Vanadium oxide as new charge recombination blocking layer for high efficiency dye-sensitized solar cells. Nano Energy, 2015, 13, 368-375.	16.0	39
16	Alternative benzodithiophene (BDT) based polymeric hole transport layer for efficient perovskite solar cells. Solar Energy Materials and Solar Cells, 2017, 168, 8-13.	6.2	37
17	Improved performance of dye solar cells using nanocarbon as support for platinum nanoparticles in counter electrode. Nano Energy, 2014, 5, 116-121.	16.0	35
18	Characteristics of SnO2 nanofiber/TiO2 nanoparticle composite for dye-sensitized solar cells. AIP Advances, 2015, 5, .	1.3	34

Нутнам Еlbohy

#	Article	IF	CITATIONS
19	Dye-Sensitized Solar Cells Based on Porous Hollow Tin Oxide Nanofibers. IEEE Transactions on Electron Devices, 2015, 62, 2027-2032.	3.0	29
20	Synergistic engineering of hole transport materials in perovskite solar cells. InformaÄnÃ-Materiály, 2020, 2, 928-941.	17.3	29
21	Nanoscale control of grain boundary potential barrier, dopant density and filled trap state density for higher efficiency perovskite solar cells. InformaÄnÄ-MateriÄ¡ly, 2020, 2, 409-423.	17.3	25
22	Incorporation of <inline-formula> <tex-math notation="TeX">\${m TiO}_{2}\$ </tex-math></inline-formula> Nanoparticles Into <inline-formula> <tex-math notation="TeX">\${m SnO}_{2}\$ </tex-math </inline-formula> Nanofibers for Higher Efficiency Dye-Sensitized Solar Cells. IEEE Electron Device Letters, 2014, 35, 578-580.	3.9	21
23	A Simple Cost-Effective Approach to Enhance Performance of Bifacial Dye-Sensitized Solar Cells. IEEE Journal of Photovoltaics, 2016, 6, 912-917.	2.5	16
24	Synthesis, modeling and photovoltaic properties of a benzothiadiazole based molecule for dye-sensitized solar cells. Journal of Materials Science: Materials in Electronics, 2016, 27, 4501-4507.	2.2	16
25	Photovoltaic performance and impedance spectroscopy of a purely organic dye and most common metallic dye based dye-sensitized solar cells. Journal of Materials Science: Materials in Electronics, 2017, 28, 6552-6559.	2.2	16
26	Urea-Treated Electrolytes for Higher Efficiency Dye-Sensitized Solar Cells. Journal of Physical Chemistry C, 2017, 121, 21225-21230.	3.1	15
27	Tailoring the Grain Boundaries of Wideâ€Bandgap Perovskite Solar Cells by Molecular Engineering. Solar Rrl, 2020, 4, 2000384.	5.8	15
28	Plasmonic silver nanowires for higher efficiency dye-sensitized solar cells. Materials Today Energy, 2017, 5, 237-242.	4.7	13
29	Hysteresis analysis in dye-sensitized solar cell based on different metal alkali cations in the electrolyte. Electrochimica Acta, 2019, 319, 110-117.	5.2	13
30	Investigation of novel anthracene-bridged carbazoles as sensitizers and Co-sensitizers for dye-sensitized solar cells. International Journal of Energy Research, 2015, 39, 1335-1344.	4.5	12
31	Evaluation of Counter Electrodes Composed by Carbon Nanofibers and Nanoparticles in Dye-Sensitized Solar Cells. IEEE Transactions on Electron Devices, 2013, 60, 3883-3887.	3.0	10
32	Interface Modification of Inverted Structure PSBTBT:PC ₇₀ BM Solar Cells for Improved Performance. IEEE Journal of Photovoltaics, 2015, 5, 1659-1664.	2.5	8
33	An insight into device performance and hysteresis in dye-sensitized solar cell using 5-aminovaleric acid and 5-aminovaleric acid hydrochloride as electrolyte additives. Solar Energy, 2021, 221, 375-383.	6.1	5
34	Kinetic Monte Carlo Simulation of Perovskite Solar Cells to Probe Film Coverage and Thickness. Advanced Energy and Sustainability Research, 2021, 2, 2000068.	5.8	3
35	Efficiency Enhancement in Plasmonic Dye-Sensitized Solar Cell Employing High Performance TiO2 Photoanode Doped with Silver Nanoparticles. International Journal of Sustainable Energy and Environmental Research, 2018, 7, 44-52.	1.3	3
36	Urea treated WO <inf>3</inf> and SnO <inf>2</inf> as cost effective and efficient counter electrodes of dye sensitized solar cells. , 2016, , .		2

#	Article	IF	CITATIONS
37	Functionalized Carboxylate Deposition for rapid sensitization of dye-sensitized solar cells. Solar Energy, 2016, 126, 128-136.	6.1	1