
Matevž Likar

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3873480/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Isolates of dark septate endophytes reduce metal uptake and improve physiology of Salix caprea L Plant and Soil, 2013, 370, 593-604.	1.8	102
2	Fungal community structure under goat willows (Salix caprea L.) growing at metal polluted site: the potential of screening in a model phytostabilisation study. Plant and Soil, 2010, 330, 345-356.	1.8	74
3	Importance of soil and vineyard management in the determination of grapevine mineral composition. Science of the Total Environment, 2015, 505, 724-731.	3.9	66
4	Diversity of halophytes and identification of arbuscular mycorrhizal fungi colonising their roots in an abandoned and sustained part of SeÄovlje salterns. Soil Biology and Biochemistry, 2009, 41, 1847-1856.	4.2	55
5	Breeding buckwheat for nutritional quality. Breeding Science, 2020, 70, 67-73.	0.9	47
6	Application of temporal temperature gradient gel electrophoresis for characterisation of fungal endophyte communities of Salix caprea L. in a heavy metal polluted soil. Science of the Total Environment, 2009, 407, 6179-6187.	3.9	43
7	Ecological and conventional viticulture gives rise to distinct fungal and bacterial microbial communities in vineyard soils. Applied Soil Ecology, 2017, 113, 86-95.	2.1	39
8	Distribution and diversity of arbuscular mycorrhizal fungi in grapevines from production vineyards along the eastern Adriatic coast. Mycorrhiza, 2013, 23, 209-219.	1.3	38
9	Composition of mineral elements and bioactive compounds in tartary buckwheat and wheat sprouts as affected by natural mineral-rich water. Journal of Cereal Science, 2016, 69, 9-16.	1.8	33
10	Occurrence of root endophytic fungi in organic versus conventional vineyards on the Croatian coast. Agriculture, Ecosystems and Environment, 2014, 192, 115-121.	2.5	31
11	Arbuscular mycorrhizal fungi alter Hg root uptake and ligand environment as studied by X-ray absorption fine structure. Environmental and Experimental Botany, 2017, 133, 12-23.	2.0	31
12	Breeding Buckwheat for Increased Levels of Rutin, Quercetin and Other Bioactive Compounds with Potential Antiviral Effects. Plants, 2020, 9, 1638.	1.6	28
13	Diversity and seasonal variations of mycorrhiza and rhizosphere bacteria in three common plant species at the Slovenian Ljubljana Marsh. Biology and Fertility of Soils, 2009, 45, 573-583.	2.3	26
14	UV-B radiation affects flavonoids and fungal colonisation in Fagopyrum esculentum and F. tataricum. Open Life Sciences, 2012, 7, 275-283.	0.6	26
15	Mycorrhizal status and diversity of fungal endophytes in roots of common buckwheat (Fagopyrum) Tj ETQq1 1	0.784314 1.3	rgBT_/Overlo
16	Antifungal potential of thyme essential oil as a preservative for storage of wheat seeds. Acta Botanica Croatica, 2017, 76, 64-71.	0.3	25
17	Comparison of lovastatin, citrinin and pigment production of different Monascus purpureus strains grown on rice and millet. Journal of Food Science and Technology, 2019, 56, 3364-3373.	1.4	22
18	Molecular diversity and metal accumulation of different Thlaspi praecox populations from Slovenia. Plant and Soil, 2010, 330, 195-205.	1.8	21

Matevž Likar

#	Article	IF	CITATIONS
19	Temporal changes in fungal communities from buckwheat seeds and their effects on seed germination and seedling secondary metabolism. Fungal Biology, 2016, 120, 666-678.	1.1	20
20	Hypoxia and inactivity related physiological changes precede or take place in absence of significant rearrangements in bacterial community structure: The PlanHab randomized trial pilot study. PLoS ONE, 2017, 12, e0188556.	1.1	20
21	Neighbouring weeds influence the formation of arbuscular mycorrhiza in grapevine. Symbiosis, 2012, 56, 111-120.	1.2	19
22	Metallophyte status of violets of the section Melanium. Chemosphere, 2013, 93, 1844-1855.	4.2	18
23	The arbuscular mycorrhizal fungus Glomus mosseae alleviates autotoxic effects in maize (Zea mays L.). European Journal of Soil Biology, 2013, 58, 59-65.	1.4	18
24	Genetic Structure and Relationships among Wild and Cultivated Grapevines from Central Europe and Part of the Western Balkan Peninsula. Genes, 2020, 11, 962.	1.0	16
25	1,8-dihydroxy naphthalene (DHN) - melanin confers tolerance to cadmium in isolates of melanised dark septate endophytes. Ecotoxicology and Environmental Safety, 2021, 222, 112493.	2.9	16
26	Phenolic Responses to Esca-Associated Fungi in Differently Decayed Grapevine Woods from Different Trunk Parts of â€~Cabernet Sauvignon'. Journal of Agricultural and Food Chemistry, 2017, 65, 6615-6624.	2.4	15
27	Early defence reactions in Norway spruce seedlings inoculated with the mycorrhizal fungus Pisolithus tinctorius (Persoon) Coker & Couch and the pathogen Heterobasidion annosum (Fr.) Bref Trees - Structure and Function, 2008, 22, 861-868.	0.9	13
28	The Effect of Mycorrhizal Inoculum and Phosphorus Treatment on Growth and Flowering of Ajania (Ajania pacifica (Nakai) Bremer et Humphries) Plant. Horticulturae, 2021, 7, 178.	1.2	13
29	Dark Septate Endophytes and Mycorrhizal Fungi of Trees Affected by Pollution. Forestry Sciences, 2011, , 189-201.	0.4	12
30	Original Leaf Colonisers Shape Fungal Decomposer Communities of Phragmites australis in Intermittent Habitats. Journal of Fungi (Basel, Switzerland), 2022, 8, 284.	1.5	6
31	Root-associated community composition and co-occurrence patterns of fungi in wild grapevine. Fungal Ecology, 2021, 50, 101034.	0.7	5
32	Links Between Genetic Groups, Host Specificity, and Ergot-Alkaloid Profiles within <i>Claviceps purpurea</i> (Fr.) Tul. on Slovenian Grasses. Plant Disease, 2018, 102, 1334-1340.	0.7	4
33	NEW INSIGHTS INTO STRUCTURES AND COMPOSITION OF PLANT FOOD MATERIALS. Journal of Microbiology, Biotechnology and Food Sciences, 2017, 7, 57-61.	0.4	3
34	Arbuscular Mycorrhizal Fungi and Dark Septate Endophytes in Grapevine: The Potential for Sustainable Viticulture?. , 2017, , 275-289.		2
35	Dark Septate Endophytes and Mycorrhizal Fungi of Trees Affected by Metal Pollution. Forestry Sciences, 2018, , 119-137.	0.4	2
36	Buckwheat Milling Waste Effects on Root Morphology and Mycorrhization of Silver Fir Seedlings Inoculated with Black Summer Truffle (Tuber aestivum Vittad.). Forests, 2022, 13, 240.	0.9	2

#	Article	IF	CITATIONS
37	High incidence of arbuscular mycorrhizal fungi in rare and endangered wild grapevine. Plant Biosystems, 2018, 152, 1075-1078.	0.8	1
38	Dataset on endophytic and rhizoplane fungi on the roots of wild grapevine in Croatia and Bosnia and Herzegovina. Data in Brief, 2021, 34, 106692.	0.5	0