Jonathan Crosier

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3873412/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Hydrometeor classification of quasi-vertical profiles of polarimetric radar measurements using a top-down iterative hierarchical clustering method. Atmospheric Measurement Techniques, 2021, 14, 1075-1098.	3.1	7
2	Characterising optical array particle imaging probes: implications for small-ice-crystal observations. Atmospheric Measurement Techniques, 2021, 14, 1917-1939.	3.1	7
3	Small ice particles at slightly supercooled temperatures in tropical maritime convection. Atmospheric Chemistry and Physics, 2020, 20, 3895-3904.	4.9	14
4	Revisiting particle sizing using greyscale optical array probes: evaluation using laboratory experiments and synthetic data. Atmospheric Measurement Techniques, 2019, 12, 3067-3079.	3.1	11
5	Aircraft and ground measurements of dust aerosols over the west African coast in summer 2015 during ICE-D and AER-D. Atmospheric Chemistry and Physics, 2018, 18, 3817-3838.	4.9	38
6	In situ measurements of cloud microphysical and aerosol properties during the break-up of stratocumulus cloud layers in cold air outbreaks over the North Atlantic. Atmospheric Chemistry and Physics, 2018, 18, 17191-17206.	4.9	12
7	The effect of secondary ice production parameterization on the simulation of a cold frontal rainband. Atmospheric Chemistry and Physics, 2018, 18, 16461-16480.	4.9	19
8	Coarse-mode mineral dust size distributions, composition and optical properties from AER-D aircraft measurements over the tropical eastern Atlantic. Atmospheric Chemistry and Physics, 2018, 18, 17225-17257.	4.9	80
9	Microphysical Properties and Radar Polarimetric Features within a Warm Front. Monthly Weather Review, 2018, 146, 2003-2022.	1.4	7
10	Microphysical Properties of Ice Crystal Precipitation and Surface-Generated Ice Crystals in a High Alpine Environment in Switzerland. Journal of Applied Meteorology and Climatology, 2017, 56, 433-453.	1.5	11
11	Ice Iollies: An ice particle generated in supercooled conveyor belts. Geophysical Research Letters, 2017, 44, 5222-5230.	4.0	13
12	Cloud Ice Properties: In Situ Measurement Challenges. Meteorological Monographs, 2017, 58, 9.1-9.23.	5.0	102
13	Processing of Ice Cloud In Situ Data Collected by Bulk Water, Scattering, and Imaging Probes: Fundamentals, Uncertainties, and Efforts toward Consistency. Meteorological Monographs, 2017, 58, 11.1-11.33.	5.0	56
14	Mixed-Phase Clouds: Progress and Challenges. Meteorological Monographs, 2017, 58, 5.1-5.50.	5.0	165
15	In situ measurements of cloud microphysics and aerosol over coastal Antarctica during the MAC campaign. Atmospheric Chemistry and Physics, 2017, 17, 13049-13070.	4.9	26
16	The Convective Precipitation Experiment (COPE): Investigating the Origins of Heavy Precipitation in the Southwestern United Kingdom. Bulletin of the American Meteorological Society, 2016, 97, 1003-1020.	3.3	40
17	Airborne observations of the microphysical structure of two contrasting cirrus clouds. Journal of Geophysical Research D: Atmospheres, 2016, 121, 13,510.	3.3	22
18	Aerosol measurements during COPE: composition, size, and sources of CCN and INPs at the interface between marine and terrestrial influences. Atmospheric Chemistry and Physics, 2016, 16, 11687-11709.	4.9	16

JONATHAN CROSIER

#	Article	IF	CITATIONS
19	Observations of cloud microphysics and ice formation during COPE. Atmospheric Chemistry and Physics, 2016, 16, 799-826.	4.9	55
20	Observed microphysical changes in Arctic mixed-phase clouds when transitioning from sea ice to open ocean. Atmospheric Chemistry and Physics, 2016, 16, 13945-13967.	4.9	31
21	The origins of ice crystals measured in mixed-phase clouds at the high-alpine site Jungfraujoch. Atmospheric Chemistry and Physics, 2015, 15, 12953-12969.	4.9	53
22	Advances in understanding mineral dust and boundary layer processes over the Sahara from Fennec aircraft observations. Atmospheric Chemistry and Physics, 2015, 15, 8479-8520.	4.9	57
23	Observations and comparisons of cloud microphysical properties in spring and summertime Arctic stratocumulus clouds during the ACCACIA campaign. Atmospheric Chemistry and Physics, 2015, 15, 3719-3737.	4.9	33
24	Comparison of cloud properties between cloudsat retrievals and airplane measurements in mixed-phase cloud layers of weak convective and stratus clouds. Advances in Atmospheric Sciences, 2015, 32, 1628-1638.	4.3	3
25	Cloud Banding and Winds in Intense European Cyclones: Results from the DIAMET Project. Bulletin of the American Meteorological Society, 2015, 96, 249-265.	3.3	32
26	Observations of the Origin and Distribution of Ice in Cold, Warm, and Occluded Frontal Systems during the DIAMET Campaign. Monthly Weather Review, 2014, 142, 4230-4255.	1.4	13
27	Observations of the Variation in Aerosol and Cloud Microphysics along the 20°S Transect on 13 November 2008 during VOCALS-REx. Journals of the Atmospheric Sciences, 2014, 71, 2927-2943.	1.7	7
28	Diabatic Heating and Cooling Rates Derived from In Situ Microphysics Measurements: A Case Study of a Wintertime U.K. Cold Front. Monthly Weather Review, 2014, 142, 3100-3125.	1.4	14
29	Microphysical properties of cold frontal rainbandsâ€. Quarterly Journal of the Royal Meteorological Society, 2014, 140, 1257-1268.	2.7	41
30	Can aerosols influence deep tropical convection? Aerosol indirect effects in the <i>Hector</i> island thunderstorm. Quarterly Journal of the Royal Meteorological Society, 2013, 139, 2190-2208.	2.7	13
31	The effective density of small ice particles obtained from <i>in situ</i> aircraft observations of mid″atitude cirrus. Quarterly Journal of the Royal Meteorological Society, 2013, 139, 1923-1934.	2.7	71
32	Evaluating MODIS cloud retrievals with in situ observations from VOCALS-REx. Atmospheric Chemistry and Physics, 2013, 13, 191-209.	4.9	50
33	Optical properties of Saharan dust aerosol and contribution from the coarse mode as measured during the Fennec 2011 aircraft campaign. Atmospheric Chemistry and Physics, 2013, 13, 303-325.	4.9	172
34	Ice formation and development in aged, wintertime cumulus over the UK: observations and modelling. Atmospheric Chemistry and Physics, 2012, 12, 4963-4985.	4.9	92
35	Aircraft measurements of wave clouds. Atmospheric Chemistry and Physics, 2012, 12, 9881-9892.	4.9	8
36	In-situ aircraft observations of ice concentrations within clouds over the Antarctic Peninsula and Larsen Ice Shelf, Atmospheric Chemistry and Physics, 2012, 12, 11275-11294	4.9	39

JONATHAN CROSIER

#	Article	IF	CITATIONS
37	Evaluating WRF-Chem aerosol indirect effects in Southeast Pacific marine stratocumulus during VOCALS-REx. Atmospheric Chemistry and Physics, 2012, 12, 3045-3064.	4.9	77
38	Characterizing the Aging of Biomass Burning Organic Aerosol by Use of Mixing Ratios: A Meta-analysis of Four Regions. Environmental Science & amp; Technology, 2012, 46, 13093-13102.	10.0	109
39	South East Pacific atmospheric composition and variability sampled along 20° S during VOCALS-REx. Atmospheric Chemistry and Physics, 2011, 11, 5237-5262.	4.9	119
40	Exploring the vertical profile of atmospheric organic aerosol: comparing 17 aircraft field campaigns with a global model. Atmospheric Chemistry and Physics, 2011, 11, 12673-12696.	4.9	240
41	Observations of ice multiplication in a weakly convective cell embedded in supercooled mid-level stratus. Atmospheric Chemistry and Physics, 2011, 11, 257-273.	4.9	119
42	Seasonal variation of fine particulate composition in the centre of a UK city. Atmospheric Environment, 2011, 45, 4379-4389.	4.1	20
43	<i>In situ</i> aerosol measurements taken during the 2007 COPS field campaign at the Hornisgrinde ground site. Quarterly Journal of the Royal Meteorological Society, 2011, 137, 252-266.	2.7	8
44	Development of ice particles in convective clouds observed over the Black Forest mountains during COPS. Quarterly Journal of the Royal Meteorological Society, 2011, 137, 275-286.	2.7	14
45	Reconciliation of measurements of hygroscopic growth and critical supersaturation of aerosol particles in central Germany. Atmospheric Chemistry and Physics, 2010, 10, 11737-11752.	4.9	60
46	Modelling of chemical and physical aerosol properties during the ADRIEX aerosol campaign. Quarterly Journal of the Royal Meteorological Society, 2009, 135, 53-66.	2.7	8
47	Influence of particle chemical composition on the phase of cold clouds at a highâ€alpine site in Switzerland. Journal of Geophysical Research, 2009, 114, .	3.3	30
48	Secondary organic aerosol from biogenic VOCs over West Africa during AMMA. Atmospheric Chemistry and Physics, 2009, 9, 3841-3850.	4.9	85
49	Vertical distribution of sub-micron aerosol chemical composition from North-Western Europe and the North-East Atlantic. Atmospheric Chemistry and Physics, 2009, 9, 5389-5401.	4.9	86
50	Prediction of visibility and aerosol within the operational Met Office Unified Model. II: Validation of model performance using observational data. Quarterly Journal of the Royal Meteorological Society, 2008, 134, 1817-1832.	2.7	34
51	Aerosol and traceâ€gas measurements in the Darwin area during the wet season. Journal of Geophysical Research, 2008, 113, .	3.3	49
52	Observations of an atmospheric chemical equator and its implications for the tropical warm pool region. Journal of Geophysical Research, 2008, 113, .	3.3	31
53	Correction to $\hat{a}\in \hat{e}$ Aerosol and trace-gas measurements in the Darwin area during the wet season $\hat{a}\in \hat{e}$ Journal of Geophysical Research, 2008, 113, .	3.3	5
54	The influence of small aerosol particles on the properties of water and ice clouds. Faraday Discussions, 2008, 137, 205-222.	3.2	43

JONATHAN CROSIER

#	Article	IF	CITATIONS
55	Chemical composition of free tropospheric aerosol for PM1 and coarse mode at the high alpine site Jungfraujoch. Atmospheric Chemistry and Physics, 2008, 8, 407-423.	4.9	144
56	Hygroscopicity of the submicrometer aerosol at the high-alpine site Jungfraujoch, 3580 m a.s.l., Switzerland. Atmospheric Chemistry and Physics, 2008, 8, 5715-5729.	4.9	100
57	Closure study between chemical composition and hygroscopic growth of aerosol particles during TORCH2. Atmospheric Chemistry and Physics, 2007, 7, 6131-6144.	4.9	273
58	Technical Note: Description and Use of the New Jump Mass Spectrum Mode of Operation for the Aerodyne Quadrupole Aerosol Mass Spectrometers (Q-AMS). Aerosol Science and Technology, 2007, 41, 865-872.	3.1	28
59	Chemical composition observed over the mid-Atlantic and the detection of pollution signatures far from source regions. Journal of Geophysical Research, 2007, 112, .	3.3	70
60	Chemical composition of summertime aerosol in the Po Valley (Italy), northern Adriatic and Black Sea. Quarterly Journal of the Royal Meteorological Society, 2007, 133, 61-75.	2.7	111
61	Aerosol Direct Radiative Impact Experiment (ADRIEX) overview. Quarterly Journal of the Royal Meteorological Society, 2007, 133, 3-15.	2.7	32
62	Intercomparison of VACC- and AMS-derived nitrate, sulphate and ammonium aerosol loadings during ADRIEX. Quarterly Journal of the Royal Meteorological Society, 2007, 133, 77-84.	2.7	10
63	A comparison of aerosol optical and chemical properties over the Adriatic and Black Seas during summer 2004: Two case-studies from ADRIEX. Quarterly Journal of the Royal Meteorological Society, 2007, 133, 33-45.	2.7	13
64	Establishing Lagrangian connections between observations within air masses crossing the Atlantic during the International Consortium for Atmospheric Research on Transport and Transformation experiment. Journal of Geophysical Research, 2006, 111, .	3.3	60
65	Chapter 7. Secondary Ice Production - current state of the science and recommendations for the future. Meteorological Monographs, 0, , .	5.0	116