
## Giuseppe Vicidomini

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3873078/publications.pdf Version: 2024-02-01



CHISEDDE VICIDOMINI

| #  | Article                                                                                                                                                                                                                   | IF  | CITATIONS |
|----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 1  | Confocal-based fluorescence fluctuation spectroscopy with a SPAD array detector. Light: Science and Applications, 2021, 10, 31.                                                                                           | 7.7 | 37        |
| 2  | PRRT2 modulates presynaptic Ca2+ influx by interacting with P/Q-type channels. Cell Reports, 2021, 35, 109248.                                                                                                            | 2.9 | 15        |
| 3  | Chromatin investigation in the nucleus using a phasor approach to structured illumination microscopy. Biophysical Journal, 2021, 120, 2566-2576.                                                                          | 0.2 | 7         |
| 4  | Pixel reassignment in image scanning microscopy with a doughnut beam: example of maximum<br>likelihood restoration. Journal of the Optical Society of America A: Optics and Image Science, and<br>Vision, 2021, 38, 1075. | 0.8 | 4         |
| 5  | Cooled SPAD array detector for low light-dose fluorescence laser scanning microscopy. Biophysical Reports, 2021, 1, 100025.                                                                                               | 0.7 | 7         |
| 6  | Evaluation of sted super-resolution image quality by image correlation spectroscopy (QuICS).<br>Scientific Reports, 2021, 11, 20782.                                                                                      | 1.6 | 7         |
| 7  | Fluorescence Laser-Scanning Microscopy with SPAD Array Detector: Towards Single-Photon Microscopy. , 2021, , .                                                                                                            |     | Ο         |
| 8  | Super-Resolution Imaging through Laser-Scanning Microscopy. , 2021, , 1-28.                                                                                                                                               |     | 0         |
| 9  | Time-Resolved STED Microscopy with Single-Photon Detector Array: a Perfect Synergy. , 2021, , .                                                                                                                           |     | Ο         |
| 10 | Linewidth and writing resolution. , 2020, , 351-384.                                                                                                                                                                      |     | 0         |
| 11 | Improving SPLIT-STED super-resolution imaging with tunable depletion and excitation power. Journal Physics D: Applied Physics, 2020, 53, 234003.                                                                          | 1.3 | 13        |
| 12 | Two-photon image-scanning microscopy with SPAD array and blind image reconstruction. Biomedical Optics Express, 2020, 11, 2905.                                                                                           | 1.5 | 33        |
| 13 | Pixel reassignment in image scanning microscopy: a re-evaluation. Journal of the Optical Society of America A: Optics and Image Science, and Vision, 2020, 37, 154.                                                       | 0.8 | 31        |
| 14 | Image scanning microscopy with multiphoton excitation or Bessel beam illumination. Journal of the Optical Society of America A: Optics and Image Science, and Vision, 2020, 37, 1639.                                     | 0.8 | 11        |
| 15 | SPAD-based asynchronous-readout array detectors for image-scanning microscopy. Optica, 2020, 7, 755.                                                                                                                      | 4.8 | 37        |
| 16 | Fourier ring correlation simplifies image restoration in fluorescence microscopy. Nature Communications, 2019, 10, 3103.                                                                                                  | 5.8 | 94        |
| 17 | Photon-separation to enhance the spatial resolution of pulsed STED microscopy. Nanoscale, 2019, 11, 1754-1761.                                                                                                            | 2.8 | 38        |
| 18 | Smart scanning for low-illumination and fast RESOLFT nanoscopy in vivo. Nature Communications, 2019, 10, 556.                                                                                                             | 5.8 | 58        |

| #  | Article                                                                                                                                                                      | IF  | CITATIONS |
|----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 19 | Measuring Mobility in Chromatin by Intensity-Sorted FCS. Biophysical Journal, 2019, 116, 987-999.                                                                            | 0.2 | 37        |
| 20 | Super-Resolution Fluorescence Microscopy. , 2019, , 1-12.                                                                                                                    |     | 0         |
| 21 | A robust and versatile platform for image scanning microscopy enabling super-resolution FLIM.<br>Nature Methods, 2019, 16, 175-178.                                          | 9.0 | 132       |
| 22 | Fluorescence Microscopy. Springer Handbooks, 2019, , 1039-1088.                                                                                                              | 0.3 | 9         |
| 23 | Efficient two-photon excitation stimulated emission depletion nanoscope exploiting spatiotemporal information. Neurophotonics, 2019, 6, 1.                                   | 1.7 | 12        |
| 24 | The SPLIT approach for enhancing the spatial resolution in pulsed STED microscopy with FastFLIM and phasor plots. , 2019, , .                                                |     | 1         |
| 25 | Local raster image correlation spectroscopy generates high-resolution intracellular diffusion maps.<br>Communications Biology, 2018, 1, 10.                                  | 2.0 | 37        |
| 26 | STED super-resolved microscopy. Nature Methods, 2018, 15, 173-182.                                                                                                           | 9.0 | 452       |
| 27 | 5 STED microscopy: exploring fluorescence lifetime gradients for super-resolution at reduced illumination intensities. , 2018, , 85-102.                                     |     | 2         |
| 28 | A Liquid Tunable Microscope as a New Paradigm in Optical Microscopy to Paint 4D Chromatin<br>Organisation in the Cell Nucleus. Biophysical Journal, 2018, 114, 347a.         | 0.2 | 1         |
| 29 | Machine learning approach for single molecule localisation microscopy. Biomedical Optics Express, 2018, 9, 1680.                                                             | 1.5 | 8         |
| 30 | Evaluating image resolution in stimulated emission depletion microscopy. Optica, 2018, 5, 32.                                                                                | 4.8 | 84        |
| 31 | Image scanning microscopy (ISM) with a single photon avalanche diode (SPAD) array detector. , 2018, , .                                                                      |     | 1         |
| 32 | Improving multiphoton STED nanoscopy with separation of photons by LIfetime Tuning (SPLIT). , 2018, , .                                                                      |     | 1         |
| 33 | A novel pulsed STED microscopy method using FastFLIM and the phasor plots. Proceedings of SPIE, 2017, , .                                                                    | 0.8 | 4         |
| 34 | Removal of anti-Stokes emission background in STED microscopy by FPGA-based synchronous<br>detection. Review of Scientific Instruments, 2017, 88, 053701.                    | 0.6 | 25        |
| 35 | Improving the Spatial Resolution in Direct Laser Writing Lithography by Using a Reversible Cationic Photoinitiator. Journal of Physical Chemistry C, 2017, 121, 16970-16977. | 1.5 | 8         |
| 36 | Measurement of nanoscale three-dimensional diffusion in the interior of living cells by STED-FCS.<br>Nature Communications, 2017, 8, 65.                                     | 5.8 | 68        |

| #  | Article                                                                                                                                                                                       | IF  | CITATIONS |
|----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 37 | Image formation in image scanning microscopy, including the case of two-photon excitation. Journal of the Optical Society of America A: Optics and Image Science, and Vision, 2017, 34, 1339. | 0.8 | 39        |
| 38 | Interpretation of the optical transfer function: Significance for image scanning microscopy. Optics Express, 2016, 24, 27280.                                                                 | 1.7 | 28        |
| 39 | Characterization of nanostructures fabricated with two-beam DLW lithography using STED microscopy. Optical Materials Express, 2016, 6, 3169.                                                  | 1.6 | 16        |
| 40 | Gated-sted microscopy with subnanosecond pulsed fiber laser for reducing photobleaching.<br>Microscopy Research and Technique, 2016, 79, 785-791.                                             | 1.2 | 27        |
| 41 | Two-Photon Excitation STED Microscopy with Time-Gated Detection. Scientific Reports, 2016, 6, 19419.                                                                                          | 1.6 | 27        |
| 42 | Learning-based approach to boost detection rate and localisation accuracy in single molecule localisation microscopy. , 2016, , .                                                             |     | 0         |
| 43 | Role of the Pico-Nano-Second Temporal Dimension in STED Microscopy. Springer Series on Fluorescence, 2016, , 311-329.                                                                         | 0.8 | 2         |
| 44 | Microscopy using source and detector arrays. , 2016, , .                                                                                                                                      |     | 0         |
| 45 | Linewidth and Writing Resolution. , 2016, , 190-220.                                                                                                                                          |     | 5         |
| 46 | Image scanning microscopy with a quadrant detector. Optics Letters, 2015, 40, 5355.                                                                                                           | 1.7 | 49        |
| 47 | Simultaneous multiplane imaging for 3D confocal microscopy using high-speed z-scanning multiplexing. , 2015, , .                                                                              |     | Ο         |
| 48 | Selective fluorescence functionalization of dye-doped polymerized structures fabricated by direct<br>laser writing (DLW) lithography. Nanoscale, 2015, 7, 20164-20170.                        | 2.8 | 5         |
| 49 | The 2015 super-resolution microscopy roadmap. Journal Physics D: Applied Physics, 2015, 48, 443001.                                                                                           | 1.3 | 291       |
| 50 | Background-Free Super-Resolution Microscopy of Subcellular Structures by Lifetime Tuning and<br>Photons Separation. Biophysical Journal, 2015, 108, 359a.                                     | 0.2 | 0         |
| 51 | STED-FLCS: An Advanced Tool to Reveal Spatiotemporal Heterogeneity of Molecular Membrane<br>Dynamics. Nano Letters, 2015, 15, 5912-5918.                                                      | 4.5 | 71        |
| 52 | The importance of the photon arrival times in STED microscopy. Proceedings of SPIE, 2015, , .                                                                                                 | 0.8 | 0         |
| 53 | Encoding and decoding spatio-temporal information for super-resolution microscopy. Nature Communications, 2015, 6, 6701.                                                                      | 5.8 | 95        |
| 54 | STED nanoscopy: a glimpse into the future. Cell and Tissue Research, 2015, 360, 143-150.                                                                                                      | 1.5 | 64        |

| #  | Article                                                                                                                                                              | IF  | CITATIONS |
|----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 55 | Gated STED microscopy with time-gated single-photon avalanche diode. Biomedical Optics Express, 2015, 6, 2258.                                                       | 1.5 | 26        |
| 56 | λ/20 axial control in 25D polymerized structures fabricated with DLW lithography. Optics Express, 2015, 23, 24850.                                                   | 1.7 | 9         |
| 57 | Influence of laser intensity noise on gated CW-STED microscopy. Laser Physics Letters, 2014, 11, 095603.                                                             | 0.6 | 14        |
| 58 | Multi-images deconvolution improves signal-to-noise ratio on gated stimulated emission depletion microscopy. Applied Physics Letters, 2014, 105, 234106.             | 1.5 | 43        |
| 59 | Simultaneous multiplane confocal microscopy using acoustic tunable lenses. Optics Express, 2014, 22, 19293.                                                          | 1.7 | 93        |
| 60 | Gated CW-STED microscopy: A versatile tool for biological nanometer scale investigation. Methods, 2014, 66, 124-130.                                                 | 1.9 | 60        |
| 61 | A new filtering technique for removing antiâ€&tokes emission background in gated CWâ€&TED microscopy.<br>Journal of Biophotonics, 2014, 7, 376-380.                  | 1.1 | 36        |
| 62 | Fluorescence microscopy in the spotlight. Microscopy Research and Technique, 2014, 77, 479-482.                                                                      | 1.2 | 10        |
| 63 | Synthesis of highly luminescent wurtzite CdSe/CdS giant-shell nanocrystals using a fast continuous injection route. Journal of Materials Chemistry C, 2014, 2, 3439. | 2.7 | 90        |
| 64 | The Importance of Photon Arrival Times in STED Microscopy. Springer Series on Fluorescence, 2014, , 283-301.                                                         | 0.8 | 2         |
| 65 | Super-Resolution Fluorescence Optical Microscopy: Targeted and Stochastic Read-Out Approaches.<br>Advances in Atom and Single Molecule Machines, 2014, , 27-43.      | 0.0 | 1         |
| 66 | STED Microscope Optimization: Neuroscience Applications. Biophysical Journal, 2013, 104, 670a.                                                                       | 0.2 | 0         |
| 67 | STED Microscopy with Time-Gated Detection:Benefits and Limitations. Biophysical Journal, 2013, 104, 667a-668a.                                                       | 0.2 | 1         |
| 68 | High Data Output Method for 3-D Correlative Light-Electron Microscopy Using Ultrathin Cryosections. , 2013, 950, 417-437.                                            |     | 8         |
| 69 | Stimulated Emission Depletion (STED) Microscopy. , 2013, , 2470-2475.                                                                                                |     | 1         |
| 70 | Towards real-time image deconvolution: application to confocal and STED microscopy. Scientific Reports, 2013, 3, 2523.                                               | 1.6 | 65        |
| 71 | STED Nanoscopy with Time-Gated Detection: Theoretical and Experimental Aspects. PLoS ONE, 2013, 8, e54421.                                                           | 1.1 | 134       |
|    |                                                                                                                                                                      |     |           |

Fluorescence Three-Dimensional Optical Imaging. , 2013, , 824-826.

| #  | Article                                                                                                                                                                                                                  | IF  | CITATIONS |
|----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 73 | STED with wavelengths closer to the emission maximum. Optics Express, 2012, 20, 5225.                                                                                                                                    | 1.7 | 91        |
| 74 | Single-wavelength two-photon excitation–stimulated emission depletion (SW2PE-STED)<br>superresolution imaging. Proceedings of the National Academy of Sciences of the United States of<br>America, 2012, 109, 6390-6393. | 3.3 | 84        |
| 75 | Strategies to maximize the performance of a STED microscope. Optics Express, 2012, 20, 7362.                                                                                                                             | 1.7 | 113       |
| 76 | Optimizing Parameters for Wll STED Imaging. Biophysical Journal, 2012, 102, 725a.                                                                                                                                        | 0.2 | 1         |
| 77 | 3D HDO-CLEM. Methods in Cell Biology, 2012, 111, 95-115.                                                                                                                                                                 | 0.5 | 12        |
| 78 | Simultaneous multi-lifetime multi-color STED imaging for colocalization analyses. Optics Express, 2011, 19, 3130.                                                                                                        | 1.7 | 204       |
| 79 | Sharper low-power STED nanoscopy by time gating. Nature Methods, 2011, 8, 571-573.                                                                                                                                       | 9.0 | 396       |
| 80 | A novel approach for correlative light electron microscopy analysis. Microscopy Research and Technique, 2010, 73, 215-224.                                                                                               | 1.2 | 29        |
| 81 | Automatic deconvolution in 4Pi-microscopy with variable phase. Optics Express, 2010, 18, 10154.                                                                                                                          | 1.7 | 23        |
| 82 | Application of the splitâ€gradient method to 3D image deconvolution in fluorescence microscopy.<br>Journal of Microscopy, 2009, 234, 47-61.                                                                              | 0.8 | 28        |
| 83 | Automatic deconvolution of 4Pi-microscopy data with arbitrary phase. Optics Letters, 2009, 34, 3583.                                                                                                                     | 1.7 | 10        |
| 84 | Annular pupil filter under shot-noise condition for linear and non linear microscopy. Optics Express, 2009, 17, 6867.                                                                                                    | 1.7 | 7         |
| 85 | Image deblurring with Poisson data: from cells to galaxies. Inverse Problems, 2009, 25, 123006.                                                                                                                          | 1.0 | 237       |
| 86 | High Data Output and Automated 3D Correlative Light–Electron Microscopy Method. Traffic, 2008, 9,<br>1828-1838.                                                                                                          | 1.3 | 48        |
| 87 | Image reconstruction for multiphoton fluorescence microscopy. Applied Physics Letters, 2008, 92, .                                                                                                                       | 1.5 | 31        |
| 88 | Studying the illumination puzzle towards an isotropic increase of optical resolution. , 2008, , .                                                                                                                        |     | 1         |
| 89 | Markov random field aided Bayesian approach for image reconstruction in confocal microscopy.<br>Journal of Applied Physics, 2007, 102, .                                                                                 | 1.1 | 38        |
| 90 | Soft computing approach to confocal and two-photon excitation microscopy. , 2007, , .                                                                                                                                    |     | 0         |

| #   | Article                                                                                                                                                                                                        | lF  | CITATIONS |
|-----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 91  | Role of three-dimensional bleach distribution in confocal and two-photon fluorescence recovery after photobleaching experiments. Applied Optics, 2007, 46, 7401.                                               | 2.1 | 36        |
| 92  | Two-Photon Excitation Fluorescence Microscopy. , 2007, , 751-789.                                                                                                                                              |     | 6         |
| 93  | FRET measurements on fuzzy fluorescent nanostructures. Microscopy Research and Technique, 2007, 70, 452-458.                                                                                                   | 1.2 | 7         |
| 94  | Evidence for ciliary pigment localization in colored ciliates and implications for their photosensory transduction chain: A confocal microscopy study. Microscopy Research and Technique, 2007, 70, 1028-1033. | 1.2 | 4         |
| 95  | Characterization of uniform ultrathin layer for z-response measurements in three-dimensional section fluorescence microscopy. Journal of Microscopy, 2007, 225, 88-95.                                         | 0.8 | 8         |
| 96  | Multi-photon excitation microscopy. BioMedical Engineering OnLine, 2006, 5, 36.                                                                                                                                | 1.3 | 132       |
| 97  | Fuzzy logic and maximum a posteriori-based image restoration for confocal microscopy. Optics<br>Letters, 2006, 31, 3582.                                                                                       | 1.7 | 22        |
| 98  | T2P-GFP: two-photon photoactivation of PA-GFP in the 720-840 nm spectral region , 2006, 6089, 175.                                                                                                             |     | 1         |
| 99  | 3D localized photoactivation of pa-GFP in living cells using two-photon interactions. , 2006, 2006, 389-91.                                                                                                    |     | 5         |
| 100 | Image Formation in Fluorescence Microscopy. , 2005, , 371-393.                                                                                                                                                 |     | 1         |
| 101 | From Microscopy to Nanoscopy: How to Get and Read Optical Data at Single Molecule Level Using Confocal and Two-Photon Excitation Microscopy. , 2005, , 187-207.                                                |     | 0         |
| 102 | Improvement in volume estimation from confocal sections after image deconvolution. Microscopy Research and Technique, 2004, 64, 151-155.                                                                       | 1.2 | 23        |
| 103 | Three-dimensional microscopy migrates to the web with ?PowerUp Your Microscope?. Microscopy<br>Research and Technique, 2004, 64, 196-203.                                                                      | 1.2 | 9         |
| 104 | Polyelectrolytes, Polyelectrolyte Microcapsules and Nanospheres- Valuable tools for Microscope<br>Refinement in Subresolution Range. Microscopy and Microanalysis, 2004, 10, 1288-1289.                        | 0.2 | 0         |