Jiwei Zhang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3873033/publications.pdf Version: 2024-02-01

		687363	454955
30	1,016	13	30
papers	citations	h-index	g-index
34	34	34	1509
all docs	docs citations	times ranked	citing authors

INVELTHANC

#	Article	IF	CITATIONS
1	Distinctive carbon repression effects in the carbohydrate-selective wood decay fungus Rhodonia placenta. Fungal Genetics and Biology, 2022, 159, 103673.	2.1	6
2	Dual-wavelength surface plasmon resonance holographic microscopy for simultaneous measurements of cell adhesion gap and cytoplasm refractive index. Optics Letters, 2022, 47, 2306-2309.	3.3	1
3	Editorial: Fungal Genetics in Plant Biomass Conversion. Frontiers in Microbiology, 2022, 13, 875768.	3.5	0
4	Capturing an Early Gene Induction Event during Wood Decay by the Brown Rot Fungus <i>Rhodonia placenta</i> . Applied and Environmental Microbiology, 2022, , e0018822.	3.1	3
5	Light-field focusing and modulation through scattering media based on dual-polarization-encoded digital optical phase conjugation. Optics Letters, 2022, 47, 2738.	3.3	4
6	Simultaneous measurement of near-water-film air temperature and humidity fields based on dual-wavelength digital holographic interferometry. Optics Express, 2022, 30, 17278.	3.4	4
7	Chiral Structured Illumination Microscopy. ACS Photonics, 2021, 8, 130-134.	6.6	4
8	Dual-channel illumination surface plasmon resonance holographic microscopy for resolution improvement. Optics Letters, 2021, 46, 1604.	3.3	4
9	Using MALDI-FTICR-MS Imaging to Track Low-Molecular-Weight Aromatic Derivatives of Fungal Decayed Wood. Journal of Fungi (Basel, Switzerland), 2021, 7, 609.	3.5	6
10	Structured illumination microscopy for simultaneous imaging of achiral and chiral domains. Optics Letters, 2021, 46, 4546.	3.3	0
11	Plasmonic elliptical nanoholes for chiroptical analysis and enantioselective optical trapping. Nanoscale, 2021, 13, 9185-9192.	5.6	10
12	Compact Polarization-resolved Common-path Digital Holography based on Pancharatnam-Berry Phase. Optics Letters, 2021, 46, 5862-5865.	3.3	1
13	Functional Genomics, Transcriptomics, and Proteomics Reveal Distinct Combat Strategies Between Lineages of Wood-Degrading Fungi With Redundant Wood Decay Mechanisms. Frontiers in Microbiology, 2020, 11, 1646.	3.5	13
14	Nanostructural Analysis of Enzymatic and Non-enzymatic Brown Rot Fungal Deconstruction of the Lignocellulose Cell Wallâ€. Frontiers in Microbiology, 2020, 11, 1389.	3.5	30
15	Generation of optical chirality patterns with plane waves, evanescent waves and surface plasmon waves. Optics Express, 2020, 28, 760.	3.4	8
16	Fluorescence in situ mRNA hybridization for gene expression detection in a wood decay fungus. International Biodeterioration and Biodegradation, 2019, 143, 104731.	3.9	2
17	Gene Regulation Shifts Shed Light on Fungal Adaption in Plant Biomass Decomposers. MBio, 2019, 10, .	4.1	47
18	Reference genes for accurate normalization of gene expression in wood-decomposing fungi. Fungal Genetics and Biology, 2019, 123, 33-40.	2.1	7

JIWEI ZHANG

#	Article	IF	CITATIONS
19	A genomics-informed study of oxalate and cellulase regulation by brown rot wood-degrading fungi. Fungal Genetics and Biology, 2018, 112, 64-70.	2.1	26
20	Evaluation of colorimetric assays for determination of H 2 O 2 in planta during fungal wood decomposition. Journal of Microbiological Methods, 2018, 145, 10-13.	1.6	7
21	Oxidative Damage Control during Decay of Wood by Brown Rot Fungus Using Oxygen Radicals. Applied and Environmental Microbiology, 2018, 84, .	3.1	23
22	Substrate-Specific Differential Gene Expression and RNA Editing in the Brown Rot Fungus Fomitopsis pinicola. Applied and Environmental Microbiology, 2018, 84, .	3.1	22
23	Role of carbon source in the shift from oxidative to hydrolytic wood decomposition by Postia placenta. Fungal Genetics and Biology, 2017, 106, 1-8.	2.1	40
24	Localizing gene regulation reveals a staggered wood decay mechanism for the brown rot fungus <i>Postia placenta</i> . Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, 10968-10973.	7.1	160
25	Widespread Polycistronic Transcripts in Fungi Revealed by Single-Molecule mRNA Sequencing. PLoS ONE, 2015, 10, e0132628.	2.5	340
26	Construction and direct electrochemistry of orientation controlled laccase electrode. Biochemical and Biophysical Research Communications, 2014, 446, 201-205.	2.1	29
27	Improved cellulase production via disruption of PDE01641 in cellulolytic fungus Penicillium decumbens. Bioresource Technology, 2012, 123, 733-737.	9.6	13
28	Ras GTPases Modulate Morphogenesis, Sporulation and Cellulase Gene Expression in the Cellulolytic Fungus Trichoderma reesei. PLoS ONE, 2012, 7, e48786.	2.5	39
29	Improved biomass saccharification by Trichoderma reesei through heterologous expression of lacA gene from Trametes sp. AH28-2. Journal of Bioscience and Bioengineering, 2012, 113, 697-703.	2.2	31
30	Development of the cellulolytic fungus Trichoderma reesei strain with enhanced β-glucosidase and filter paper activity using strong artifical cellobiohydrolase 1 promoter. Bioresource Technology, 2010, 101, 9815-9818.	9.6	114