
Anna Marsano

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3872297/publications.pdf Version: 2024-02-01

ANNA MARSANO

#	Article	IF	CITATIONS
1	Nanocomposites in 3D Bioprinting for Engineering Conductive and Stimuliâ€Responsive Constructs Mimicking Electrically Sensitive Tissue. Advanced NanoBiomed Research, 2022, 2, 2100108.	3.6	8
2	Bizonal cardiac engineered tissues with differential maturation features in a mid-throughput multimodal bioreactor. IScience, 2022, 25, 104297.	4.1	2
3	Impact on Mechanical Properties of 10 versus 20 Minute Treatment of Human Pericardium with Glutaraldehyde in OZAKI Procedure. Annals of Thoracic and Cardiovascular Surgery, 2021, 27, 273-277.	0.8	2
4	Long-Term Severe In Vitro Hypoxia Exposure Enhances the Vascularization Potential of Human Adipose Tissue-Derived Stromal Vascular Fraction Cell Engineered Tissues. International Journal of Molecular Sciences, 2021, 22, 7920.	4.1	6
5	A dynamic microscale mid-throughput fibrosis model to investigate the effects of different ratios of cardiomyocytes and fibroblasts. Lab on A Chip, 2021, 21, 4177-4195.	6.0	13
6	Perfusion Bioreactors for Prevascularization Strategies in Cardiac Tissue Engineering. Reference Series in Biomedical Engineering, 2021, , 475-488.	0.1	1
7	Fatty acid-based monolayer culture to promote in vitro neonatal rat cardiomyocyte maturation. Biochimica Et Biophysica Acta - Molecular Cell Research, 2020, 1867, 118561.	4.1	7
8	Next Stage Approach to Tissue Engineering Skeletal Muscle. Bioengineering, 2020, 7, 118.	3.5	9
9	Bioreactor Platform for Biomimetic Culture and in situ Monitoring of the Mechanical Response of in vitro Engineered Models of Cardiac Tissue. Frontiers in Bioengineering and Biotechnology, 2020, 8, 733.	4.1	20
10	Fibrin hydrogels promote scar formation and prevent therapeutic angiogenesis in the heart. Journal of Tissue Engineering and Regenerative Medicine, 2020, 14, 1513-1523.	2.7	8
11	Modeling methodology for defining a priori the hydrodynamics of a dynamic suspension bioreactor. Application to human induced pluripotent stem cell culture. Journal of Biomechanics, 2019, 94, 99-106.	2.1	4
12	Paracrine potential of adipose stromal vascular fraction cells to recover hypoxiaâ€induced loss of cardiomyocyte function. Biotechnology and Bioengineering, 2019, 116, 132-142.	3.3	8
13	Myocardial infarction stabilization by cellâ€based expression of controlled Vascular Endothelial Growth Factor levels. Journal of Cellular and Molecular Medicine, 2018, 22, 2580-2591.	3.6	11
14	A three-dimensional <i>in vitro</i> dynamic micro-tissue model of cardiac scar formation. Integrative Biology (United Kingdom), 2018, 10, 174-183.	1.3	33
15	Control of angiogenesis and host response by modulating the cell adhesion properties of an Elastin-Like Recombinamer-based hydrogel. Biomaterials, 2017, 135, 30-41.	11.4	44
16	Engineering of an angiogenic niche by perfusion culture of adipose-derived stromal vascular fraction cells. Scientific Reports, 2017, 7, 14252.	3.3	21
17	Scaffold Composition Determines the Angiogenic Outcome of Cellâ€Based Vascular Endothelial Growth Factor Expression by Modulating Its Microenvironmental Distribution. Advanced Healthcare Materials, 2017, 6, 1700600.	7.6	12
18	Poloâ€Like Kinase 2 is Dynamically Regulated to Coordinate Proliferation and Early Lineage Specification Downstream of Yesâ€Associated Protein 1 in Cardiac Progenitor Cells. Journal of the American Heart Association, 2017, 6, .	3.7	12

Anna Marsano

#	Article	IF	CITATIONS
19	Vascular Endothelial Growth Factor Sequestration Enhances In Vivo Cartilage Formation. International Journal of Molecular Sciences, 2017, 18, 2478.	4.1	8
20	Perfusion Bioreactors for Prevascularization Strategies in Cardiac Tissue Engineering. , 2017, , 1-14.		2
21	Cardiac Meets Skeletal: What's New in Microfluidic Models for Muscle Tissue Engineering. Molecules, 2016, 21, 1128.	3.8	39
22	Spontaneous In Vivo Chondrogenesis of Bone Marrow-Derived Mesenchymal Progenitor Cells by Blocking Vascular Endothelial Growth Factor Signaling. Stem Cells Translational Medicine, 2016, 5, 1730-1738.	3.3	47
23	Engineered mesenchymal cell-based patches as controlled VEGF delivery systems to induce extrinsic angiogenesis. Acta Biomaterialia, 2016, 42, 127-135.	8.3	21
24	Influence of decellularized pericardium matrix on the behavior of cardiac progenitors. Journal of Applied Polymer Science, 2016, 133, .	2.6	4
25	Three dimensional multiâ€cellular muscleâ€like tissue engineering in perfusionâ€based bioreactors. Biotechnology and Bioengineering, 2016, 113, 226-236.	3.3	31
26	Beating heart on a chip: a novel microfluidic platform to generate functional 3D cardiac microtissues. Lab on A Chip, 2016, 16, 599-610.	6.0	322
27	Facile Fabrication of Egg White Macroporous Sponges for Tissue Regeneration. Advanced Healthcare Materials, 2015, 4, 2281-2290.	7.6	41
28	Engineered autologous cartilage tissue for nasal reconstruction after tumour resection: an observational first-in-human trial. Lancet, The, 2014, 384, 337-346.	13.7	163
29	In Vitro Mesenchymal Trilineage Differentiation and Extracellular Matrix Production by Adipose and Bone Marrow Derived Adult Equine Multipotent Stromal Cells on a Collagen Scaffold. Stem Cell Reviews and Reports, 2013, 9, 858-872.	5.6	57
30	The effect of controlled expression of VEGF by transduced myoblasts in a cardiac patch on vascularization in a mouse model of myocardial infarction. Biomaterials, 2013, 34, 393-401.	11.4	71
31	Scaffold-Based Delivery of a Clinically Relevant Anti-Angiogenic Drug Promotes the Formation of <i>In Vivo</i> Stable Cartilage. Tissue Engineering - Part A, 2013, 19, 1960-1971.	3.1	47
32	Generation of Human Adult Mesenchymal Stromal/Stem Cells Expressing Defined Xenogenic Vascular Endothelial Growth Factor Levels by Optimized Transduction and Flow Cytometry Purification. Tissue Engineering - Part C: Methods, 2012, 18, 283-292.	2.1	27
33	Controlled Angiogenesis in the Heart by Cell-Based Expression of Specific Vascular Endothelial Growth Factor Levels. Human Gene Therapy Methods, 2012, 23, 346-356.	2.1	24
34	Cell and Gene Therapy Approaches for Cardiac Vascularization. Cells, 2012, 1, 961-975.	4.1	11
35	Channelled scaffolds for engineering myocardium with mechanical stimulation. Journal of Tissue Engineering and Regenerative Medicine, 2012, 6, 748-756.	2.7	43
36	Optimization of electrical stimulation parameters for cardiac tissue engineering. Journal of Tissue Engineering and Regenerative Medicine, 2011, 5, e115-e125.	2.7	131

Anna Marsano

#	Article	IF	CITATIONS
37	Perfusion seeding of channeled elastomeric scaffolds with myocytes and endothelial cells for cardiac tissue engineering. Biotechnology Progress, 2010, 26, 565-572.	2.6	65
38	Scaffold stiffness affects the contractile function of threeâ€dimensional engineered cardiac constructs. Biotechnology Progress, 2010, 26, 1382-1390.	2.6	62
39	Surface-patterned electrode bioreactor for electrical stimulation. Lab on A Chip, 2010, 10, 692.	6.0	91
40	Challenges in Cardiac Tissue Engineering. Tissue Engineering - Part B: Reviews, 2010, 16, 169-187.	4.8	431
41	Electrical stimulation systems for cardiac tissue engineering. Nature Protocols, 2009, 4, 155-173.	12.0	463
42	Efficacy and mechanisms of vacuum-assisted closure (VAC) therapy in promoting wound healing: a rodent model. Journal of Plastic, Reconstructive and Aesthetic Surgery, 2009, 62, 1331-1338.	1.0	90
43	Alignment and elongation of human adipose-derived stem cells in response to direct-current electrical stimulation. , 2009, 2009, 6517-21.		44
44	Chitosan-Collagen Based Channeled Scaffold for Cardiac Tissue Engineering. , 2009, , .		1
45	Subpixel Texture Correlation for Contractile Behaviors of Engineered Cardiac Tissue. , 2009, , .		0
46	Cardiac tissue engineering using perfusion bioreactor systems. Nature Protocols, 2008, 3, 719-738.	12.0	249
47	Use of hydrodynamic forces to engineer cartilaginous tissues resembling the non-uniform structure and function of meniscus. Biomaterials, 2006, 27, 5927-5934.	11.4	49