List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3872006/publications.pdf Version: 2024-02-01

	13827	13727
18,572	67	129
citations	h-index	g-index
222	222	17000
223	223	17888
docs citations	times ranked	citing authors
	citations 223	18,572 67 citations h-index 223 223

Ι τιν Ραν

#	Article	IF	CITATIONS
1	Electrocatalytic oxygen evolution reaction for energy conversion and storage: A comprehensive review. Nano Energy, 2017, 37, 136-157.	8.2	1,257
2	Electrocatalysts for Hydrogen Evolution in Alkaline Electrolytes: Mechanisms, Challenges, and Prospective Solutions. Advanced Science, 2018, 5, 1700464.	5.6	1,022
3	Hollow Cobalt-Based Bimetallic Sulfide Polyhedra for Efficient All-pH-Value Electrochemical and Photocatalytic Hydrogen Evolution. Journal of the American Chemical Society, 2016, 138, 1359-1365.	6.6	656
4	Titanium-Defected Undoped Anatase TiO ₂ with p-Type Conductivity, Room-Temperature Ferromagnetism, and Remarkable Photocatalytic Performance. Journal of the American Chemical Society, 2015, 137, 2975-2983.	6.6	549
5	Carbon nitride with simultaneous porous network and O-doping for efficient solar-energy-driven hydrogen evolution. Nano Energy, 2015, 12, 646-656.	8.2	537
6	Tungsten Oxides for Photocatalysis, Electrochemistry, and Phototherapy. Advanced Materials, 2015, 27, 5309-5327.	11.1	492
7	Engineering Cobalt Defects in Cobalt Oxide for Highly Efficient Electrocatalytic Oxygen Evolution. ACS Catalysis, 2018, 8, 3803-3811.	5.5	430
8	Nanostructured bismuth vanadate-based materials for solar-energy-driven water oxidation: a review on recent progress. Nanoscale, 2014, 6, 14044-14063.	2.8	426
9	Review on selective hydrogenation of nitroarene by catalytic, photocatalytic and electrocatalytic reactions. Applied Catalysis B: Environmental, 2018, 227, 386-408.	10.8	371
10	Switching charge transfer of C3N4/W18O49 from type-II to Z-scheme by interfacial band bending for highly efficient photocatalytic hydrogen evolution. Nano Energy, 2017, 40, 308-316.	8.2	346
11	Advances in Piezoâ€Phototronic Effect Enhanced Photocatalysis and Photoelectrocatalysis. Advanced Energy Materials, 2020, 10, 2000214.	10.2	333
12	MOF-derived C-doped ZnO prepared via a two-step calcination for efficient photocatalysis. Applied Catalysis B: Environmental, 2016, 189, 181-191.	10.8	287
13	An Ultra-Low-Friction Triboelectric–Electromagnetic Hybrid Nanogenerator for Rotation Energy Harvesting and Self-Powered Wind Speed Sensor. ACS Nano, 2018, 12, 9433-9440.	7.3	286
14	Pt/Fe2O3 with Pt–Fe pair sites as a catalyst for oxygen reduction with ultralow Pt loading. Nature Energy, 2021, 6, 614-623.	19.8	274
15	Rational design, synthesis, adsorption principles and applications of metal oxide adsorbents: a review. Nanoscale, 2020, 12, 4790-4815.	2.8	269
16	Oxygen-Deficient Tungsten Oxide as Versatile and Efficient Hydrogenation Catalyst. ACS Catalysis, 2015, 5, 6594-6599.	5.5	252
17	Manipulating spin polarization of titanium dioxide for efficient photocatalysis. Nature Communications, 2020, 11, 418.	5.8	252
18	Water-Mediated Promotion of Dye Sensitization of TiO ₂ under Visible Light. Journal of the American Chemical Society, 2011, 133, 10000-10002.	6.6	238

#	Article	IF	CITATIONS
19	Review on synthesis and properties of high-energy-density liquid fuels: Hydrocarbons, nanofluids and energetic ionic liquids. Chemical Engineering Science, 2018, 180, 95-125.	1.9	233
20	Constructing TiO2 p-n homojunction for photoelectrochemical and photocatalytic hydrogen generation. Nano Energy, 2016, 28, 296-303.	8.2	231
21	Self-Powered Wind Sensor System for Detecting Wind Speed and Direction Based on a Triboelectric Nanogenerator. ACS Nano, 2018, 12, 3954-3963.	7.3	224
22	Oxygen-doped nanoporous carbon nitride via water-based homogeneous supramolecular assembly for photocatalytic hydrogen evolution. Applied Catalysis B: Environmental, 2018, 221, 9-16.	10.8	217
23	Regulating the Spin State of Fe ^{III} by Atomically Anchoring on Ultrathin Titanium Dioxide for Efficient Oxygen Evolution Electrocatalysis. Angewandte Chemie - International Edition, 2020, 59, 2313-2317.	7.2	214
24	Structureâ€Activity Relationship of Defective Metalâ€Based Photocatalysts for Water Splitting: Experimental and Theoretical Perspectives. Advanced Science, 2019, 6, 1900053.	5.6	206
25	NiCo-Based Electrocatalysts for the Alkaline Oxygen Evolution Reaction: A Review. ACS Catalysis, 2021, 11, 12485-12509.	5.5	204
26	High-Valence-State NiO/Co ₃ O ₄ Nanoparticles on Nitrogen-Doped Carbon for Oxygen Evolution at Low Overpotential. ACS Energy Letters, 2017, 2, 2177-2182.	8.8	200
27	Raising the Working Temperature of a Triboelectric Nanogenerator by Quenching Down Electron Thermionic Emission in Contactâ€Electrification. Advanced Materials, 2018, 30, e1803968.	11.1	199
28	Role of oxygen vacancies in photocatalytic water oxidation on ceria oxide: Experiment and DFT studies. Applied Catalysis B: Environmental, 2018, 224, 101-108.	10.8	197
29	Direct Z-scheme composite of CdS and oxygen-defected CdWO 4 : An efficient visible-light-driven photocatalyst for hydrogen evolution. Applied Catalysis B: Environmental, 2016, 198, 154-161.	10.8	196
30	Multi-layer monoclinic BiVO4 with oxygen vacancies and V4+ species for highly efficient visible-light photoelectrochemical applications. Applied Catalysis B: Environmental, 2018, 221, 187-195.	10.8	180
31	Heterogeneous Photocatalytic Organic Transformation Reactions Using Conjugated Polymers-Based Materials. ACS Catalysis, 2020, 10, 12256-12283.	5.5	161
32	Ultradispersed Nickel Phosphide on Phosphorus-Doped Carbon with Tailored d-Band Center for Efficient and Chemoselective Hydrogenation of Nitroarenes. ACS Catalysis, 2018, 8, 8420-8429.	5.5	153
33	Undoped ZnO abundant with metal vacancies. Nano Energy, 2014, 9, 71-79.	8.2	151
34	Highly selective self-condensation of cyclic ketones using MOF-encapsulating phosphotungstic acid for renewable high-density fuel. Green Chemistry, 2015, 17, 4473-4481.	4.6	144
35	Liquid-FEP-based U-tube triboelectric nanogenerator for harvesting water-wave energy. Nano Research, 2018, 11, 4062-4073.	5.8	143
36	Metal-defected spinel MnxCo3-xO4 with octahedral Mn-enriched surface for highly efficient oxygen reduction reaction. Applied Catalysis B: Environmental, 2019, 244, 536-545.	10.8	140

#	Article	IF	CITATIONS
37	Boosting Oxygen Evolution Kinetics by Mn–N–C Motifs with Tunable Spin State for Highly Efficient Solarâ€Driven Water Splitting. Advanced Energy Materials, 2019, 9, 1901505.	10.2	121
38	Rational Design of Better Hydrogen Evolution Electrocatalysts for Water Splitting: A Review. Advanced Science, 2022, 9, e2200307.	5.6	121
39	Rational Design and Construction of Cocatalysts for Semiconductorâ€Based Photoâ€Electrochemical Oxygen Evolution: A Comprehensive Review. Advanced Science, 2019, 6, 1801505.	5.6	120
40	Engineering oxygen vacancies and nickel dispersion on CeO2 by Pr doping for highly stable ethanol steam reforming. Applied Catalysis B: Environmental, 2019, 258, 117940.	10.8	116
41	Polarization-Enhanced direct Z-scheme ZnO-WO3-x nanorod arrays for efficient piezoelectric-photoelectrochemical Water splitting. Applied Catalysis B: Environmental, 2019, 259, 118079.	10.8	112
42	Photoinduced composite of Pt decorated Ni(OH)2 as strongly synergetic cocatalyst to boost H2O activation for photocatalytic overall water splitting. Applied Catalysis B: Environmental, 2019, 243, 253-261.	10.8	110
43	Morphology Evolution of TiO ₂ Facets and Vital Influences on Photocatalytic Activity. ACS Applied Materials & Interfaces, 2012, 4, 1650-1655.	4.0	105
44	Advances in Oxygen Evolution Electrocatalysts for Proton Exchange Membrane Water Electrolyzers. Advanced Energy Materials, 2022, 12, .	10.2	105
45	Synergetic promotion on photoactivity and stability of W18O49/TiO2 hybrid. Applied Catalysis B: Environmental, 2014, 147, 167-174.	10.8	100
46	Efficient synthesis of high-density aviation biofuel via solvent-free aldol condensation of cyclic ketones and furanic aldehydes. Fuel Processing Technology, 2016, 148, 361-366.	3.7	100
47	Well-dispersed molybdenum nitrides on a nitrogen-doped carbon matrix for highly efficient hydrogen evolution in alkaline media. Journal of Materials Chemistry A, 2017, 5, 20932-20937.	5.2	100
48	Highly efficient Z-scheme WO 3–x quantum dots/TiO 2 for photocatalytic hydrogen generation. Chinese Journal of Catalysis, 2017, 38, 253-259.	6.9	99
49	CoP nanoparticles embedded in P and N co-doped carbon as efficient bifunctional electrocatalyst for water splitting. Journal of Energy Chemistry, 2017, 26, 1223-1230.	7.1	98
50	Cu ₂ O Film via Hydrothermal Redox Approach: Morphology and Photocatalytic Performance. Journal of Physical Chemistry C, 2014, 118, 16335-16343.	1.5	95
51	Photoisomerization of Norbornadiene to Quadricyclane Using Transition Metal Doped TiO ₂ . Industrial & Engineering Chemistry Research, 2010, 49, 8526-8531.	1.8	94
52	Rational Structure Optimized Hybrid Nanogenerator for Highly Efficient Water Wave Energy Harvesting. Advanced Energy Materials, 2019, 9, 1802892.	10.2	92
53	TiO ₂ –ZnO Composite Sphere Decorated with ZnO Clusters for Effective Charge Isolation in Photocatalysis. Industrial & Engineering Chemistry Research, 2015, 54, 7226-7232.	1.8	91
54	Iron phosphide encapsulated in P-doped graphitic carbon as efficient and stable electrocatalyst for hydrogen and oxygen evolution reactions. Nanoscale, 2018, 10, 21327-21334.	2.8	91

#	Article	IF	CITATIONS
55	Engineering Facets and Oxygen Vacancies over Hematite Single Crystal for Intensified Electrocatalytic H ₂ O ₂ Production. Advanced Functional Materials, 2020, 30, 1910539.	7.8	90
56	Efficient water oxidation through strongly coupled graphitic C ₃ N ₄ coated cobalt hydroxide nanowires. Journal of Materials Chemistry A, 2016, 4, 12940-12946.	5.2	88
57	Complementary Electromagneticâ€Triboelectric Active Sensor for Detecting Multiple Mechanical Triggering. Advanced Functional Materials, 2018, 28, 1705808.	7.8	87
58	MnOx-decorated 3D porous C3N4 with internal donor–acceptor motifs for efficient photocatalytic hydrogen production. Applied Catalysis B: Environmental, 2019, 256, 117805.	10.8	85
59	Visible-light-induced unbalanced charge on NiCoP/TiO2 sensitized system for rapid H2 generation from hydrolysis of ammonia borane. Applied Catalysis B: Environmental, 2020, 260, 118183.	10.8	84
60	Fabrication of zero to three dimensional nanostructured molybdenum sulfides and their electrochemical and photocatalytic applications. Nanoscale, 2016, 8, 18250-18269.	2.8	79
61	Quantum dot self-decorated TiO2 nanosheets. Chemical Communications, 2013, 49, 6593.	2.2	77
62	Low‣pin‣tate Hematite with Superior Adsorption of Anionic Contaminations for Water Purification. Advanced Materials, 2020, 32, e1905988.	11.1	77
63	W ₁₈ O ₄₉ nanowire alignments with a BiOCl shell as an efficient photocatalyst. Nanoscale, 2014, 6, 8865.	2.8	74
64	Mesoporous W ₁₈ O ₄₉ hollow spheres as highly active photocatalysts. Chemical Communications, 2014, 50, 10959.	2.2	73
65	Engineering interfacial band bending over bismuth vanadate/carbon nitride by work function regulation for efficient solar-driven water splitting. Science Bulletin, 2022, 67, 389-397.	4.3	73
66	C-doped ZnO ball-in-ball hollow microspheres for efficient photocatalytic and photoelectrochemical applications. Journal of Hazardous Materials, 2017, 331, 235-245.	6.5	71
67	2020 Roadmap on gas-involved photo- and electro- catalysis. Chinese Chemical Letters, 2019, 30, 2089-2109.	4.8	71
68	Breaking Tradeâ€Off between Selectivity and Activity of Nickelâ€Based Hydrogenation Catalysts by Tuning Both Steric Effect and dâ€Band Center. Advanced Science, 2019, 6, 1900054.	5.6	69
69	Pd/Fe ₂ O ₃ with Electronic Coupling Single-Site Pd–Fe Pair Sites for Low-Temperature Semihydrogenation of Alkynes. Journal of the American Chemical Society, 2022, 144, 573-581.	6.6	69
70	Al-Nanoparticle-Containing Nanofluid Fuel: Synthesis, Stability, Properties, and Propulsion Performance. Industrial & Engineering Chemistry Research, 2016, 55, 2738-2745.	1.8	67
71	Role of Vacancies in Photocatalysis: A Review of Recent Progress. Chemistry - an Asian Journal, 2020, 15, 3599-3619.	1.7	67
72	Boosting hydrogen production from steam reforming of ethanol on nickel by lanthanum doped ceria. Applied Catalysis B: Environmental, 2021, 286, 119884.	10.8	67

#	Article	IF	CITATIONS
73	Further study on the ignition delay times of propane–hydrogen–oxygen–argon mixtures: Effect of equivalence ratio. Combustion and Flame, 2013, 160, 2283-2290.	2.8	66
74	Direct-Current Rotary-Tubular Triboelectric Nanogenerators Based on Liquid-Dielectrics Contact for Sustainable Energy Harvesting and Chemical Composition Analysis. ACS Nano, 2019, 13, 2587-2598.	7.3	66
75	Manipulating electronic delocalization of Mn3O4 by manganese defects for oxygen reduction reaction. Applied Catalysis B: Environmental, 2020, 277, 119247.	10.8	65
76	An experimental and kinetic modeling study of n-propanol and i-propanol ignition at high temperatures. Combustion and Flame, 2014, 161, 644-656.	2.8	64
77	Ti ³⁺ -defected and V-doped TiO ₂ quantum dots loaded on MCM-41. Chemical Communications, 2014, 50, 988-990.	2.2	63
78	Lignin-derived multi-cyclic high density biofuel by alkylation and hydrogenated intramolecular cyclization. Chemical Engineering Science, 2017, 158, 64-69.	1.9	63
79	Visible–Light–Induced Photodegradation of Rhodamine B over Hierarchical TiO ₂ : Effects of Storage Period and Water-Mediated Adsorption Switch. Industrial & Engineering Chemistry Research, 2012, 51, 12782-12786.	1.8	62
80	Enhancement of visible-light-induced photodegradation over hierarchical porous TiO2 by nonmetal doping and water-mediated dye sensitization. Applied Surface Science, 2013, 268, 252-258.	3.1	60
81	In Situ-Grown Cobalt–Iron Phosphide-Based Integrated Electrode for Long-Term Water Splitting under a Large Current Density at the Industrial Electrolysis Temperature. ACS Sustainable Chemistry and Engineering, 2020, 8, 17828-17838.	3.2	60
82	Photocatalytic isomerization of norbornadiene to quadricyclane over metal (V, Fe and) Tj ETQq0 0 0 rgBT /Overlo	ock 10 Tf 5 10.8	0 382 Td (Cr)
83	Hydrophobic mesoporous acidic resin for hydroxyalkylation/alkylation of 2â€methylfuran and ketone to highâ€density biofuel. AICHE Journal, 2017, 63, 680-688.	1.8	58
84	Review on the Relationship Between Liquid Aerospace Fuel Composition and Their Physicochemical Properties. Transactions of Tianjin University, 2021, 27, 87-109.	3.3	57
85	Experimental and kinetic study on ignition delay times of DME/H2/O2/Ar mixtures. Combustion and Flame, 2014, 161, 735-747.	2.8	56
86	Ag3PO4/TiO2 composite for efficient photodegradation of organic pollutants under visible light. Applied Surface Science, 2014, 317, 833-838.	3.1	55
87	Experimental and numerical study on the effect of composition on laminar burning velocities of H2/CO/N2/CO2/air mixtures. International Journal of Hydrogen Energy, 2012, 37, 18509-18519.	3.8	54
88	Phosphorusâ€Doped and Latticeâ€Defective Carbon as Metalâ€like Catalyst for the Selective Hydrogenation of Nitroarenes. ChemCatChem, 2017, 9, 4287-4294.	1.8	53
89	Iron Oxide as a Catalyst for Nitroarene Hydrogenation: Important Role of Oxygen Vacancies. Industrial & Engineering Chemistry Research, 2016, 55, 8527-8533.	1.8	52
90	A Co–Mo ₂ N composite on a nitrogen-doped carbon matrix with hydrogen evolution activity comparable to that of Pt/C in alkaline media. Journal of Materials Chemistry A, 2019, 7, 20579-20583.	5.2	52

#	Article	IF	CITATIONS
91	Controllable fabrication of homogeneous ZnO p-n junction with enhanced charge separation for efficient photocatalysis. Catalysis Today, 2019, 335, 151-159.	2.2	51
92	Renewable high-density spiro-fuels from lignocellulose-derived cyclic ketones. Chemical Communications, 2017, 53, 10303-10305.	2.2	50
93	Self-supporting NiFe LDH-MoS integrated electrode for highly efficient water splitting at the industrial electrolysis conditions. Chinese Journal of Catalysis, 2021, 42, 1732-1741.	6.9	50
94	Ni-Doped BiVO4 with V4+ Species and Oxygen Vacancies for Efficient Photoelectrochemical Water Splitting. Transactions of Tianjin University, 2019, 25, 340-347.	3.3	49
95	Controllable sonochemical synthesis of Cu2O/Cu2(OH)3NO3 composites toward synergy of adsorption and photocatalysis. Applied Catalysis B: Environmental, 2015, 164, 234-240.	10.8	48
96	One-pot production of branched decalins as high-density jet fuel from monocyclic alkanes and alcohols. Chemical Engineering Science, 2018, 180, 64-69.	1.9	47
97	Hydrogenated intramolecular cyclization of diphenylmethane derivatives for synthesizing high-density biofuel. Chemical Engineering Science, 2017, 173, 91-97.	1.9	46
98	Synthesis of high-density biofuel with excellent low-temperature properties from lignocellulose-derived feedstock. Fuel Processing Technology, 2017, 163, 45-50.	3.7	45
99	Synthesis of high-density and low-freezing-point jet fuel using lignocellulose-derived isophorone and furanic aldehydes. Sustainable Energy and Fuels, 2018, 2, 1863-1869.	2.5	44
100	Shock-Tube Measurements and Kinetic Modeling Study of Methyl Propanoate Ignition. Energy & Fuels, 2014, 28, 7194-7202.	2.5	42
101	A solar-energy-derived strained hydrocarbon as an energetic hypergolic fuel. RSC Advances, 2014, 4, 50998-51001.	1.7	42
102	Shock tube study on ignition delay of hydrogen and evaluation of various kinetic models. International Journal of Hydrogen Energy, 2016, 41, 13261-13280.	3.8	42
103	Solid-acid-mediated electronic structure regulation of electrocatalysts and scaling relation breaking of oxygen evolution reaction. Applied Catalysis B: Environmental, 2020, 277, 119237.	10.8	42
104	Experimental and Modeling Study on Ignition Delay Times of Dimethyl Ether/Propane/Oxygen/Argon Mixtures at 20 bar. Energy & Fuels, 2013, 27, 4007-4013.	2.5	41
105	Synergy Promotion of Elemental Doping and Oxygen Vacancies in Fe ₂ O ₃ Nanorods for Photoelectrochemical Water Splitting. ACS Applied Nano Materials, 2022, 5, 6781-6791.	2.4	41
106	Comparative Study of Experimental and Modeling Autoignition of Cyclohexane, Ethylcyclohexane, and <i>n</i> Propylcyclohexane. Energy & Fuels, 2014, 28, 7159-7167.	2.5	40
107	Cobalt nanoparticles encapsulated in nitrogen-doped carbon for room-temperature selective hydrogenation of nitroarenes. Chinese Journal of Catalysis, 2018, 39, 664-672.	6.9	39
108	Promotion of Nitrogen Reserve and Electronic Regulation in Bamboo-like Carbon Tubules by Cobalt Nanoparticles for Highly Efficient ORR. ACS Applied Energy Materials, 2020, 3, 2323-2330.	2.5	39

#	Article	IF	CITATIONS
109	Design and Construction of Cocatalysts for Photocatalytic Water Splitting. Wuli Huaxue Xuebao/ Acta Physico - Chimica Sinica, 2020, 36, 1905007-0.	2.2	38
110	Shock Tube Measurements and Kinetic Study on Ignition Delay Times of Lean DME/ <i>n</i> -Butane Blends at Elevated Pressures. Energy & Fuels, 2013, 27, 6238-6246.	2.5	37
111	Experimental and Kinetic Study on Ignition Delay Times of <i>iso</i> -Butanol. Energy & Fuels, 2014, 28, 2160-2169.	2.5	37
112	Experimental and kinetic study on ignition delay times of dimethyl carbonate at high temperature. Fuel, 2015, 140, 626-632.	3.4	37
113	Measurements and kinetic study on ignition delay times of propane/hydrogen in argon diluted oxygen. International Journal of Hydrogen Energy, 2013, 38, 2523-2530.	3.8	36
114	Unraveling the facet-dependent and oxygen vacancy role for ethylene hydrogenation on Co3O4 (110) surface: A DFT+U study. Applied Surface Science, 2017, 401, 241-247.	3.1	36
115	A comprehensive review of the thermal oxidation stability of jet fuels. Chemical Engineering Science, 2021, 229, 116157.	1.9	36
116	Producing methylcyclopentadiene dimer and trimer based high-performance jet fuels using 5-methyl furfural. Green Chemistry, 2020, 22, 7765-7768.	4.6	35
117	Effect of pressure and equivalence ratio on the ignition characteristics of dimethyl ether-hydrogen mixtures. International Journal of Hydrogen Energy, 2014, 39, 19212-19223.	3.8	33
118	Development and validation of a reduced chemical kinetic model for dimethyl ether combustion. Fuel, 2015, 160, 165-177.	3.4	33
119	Review on Bismuthâ€Based Photocatalyst for CO ₂ Conversion. ChemNanoMat, 2021, 7, 684-698.	1.5	33
120	High yield one-pot synthesis of high density and low freezing point jet-fuel-ranged blending from bio-derived phenol and cyclopentanol. Chemical Engineering Science, 2019, 207, 441-447.	1.9	32
121	Experimental and Modeling Study on Ignition Delay Times of Dimethyl Ether/ <i>n</i> -Butane Blends at a Pressure of 2.0 MPa. Energy & Fuels, 2014, 28, 2189-2198.	2.5	31
122	Periodic density functional theory study of ethylene hydrogenation over Co3O4 (1 1 1) surface: The critical role of oxygen vacancies. Applied Surface Science, 2016, 371, 61-66.	3.1	31
123	Integrating Pt@Ni(OH) nanowire and Pt nanoparticle on C N4with fast surface kinetics and charge transfer towards highly efficient photocatalytic water splitting. Applied Catalysis B: Environmental, 2019, 259, 118028.	10.8	30
124	Acid-catalyzed rearrangement of tetrahydrotricyclopentadiene for synthesis of high density alkyl-diamondoid fuel. Fuel, 2019, 239, 652-658.	3.4	30
125	Mo-doped Ni-based catalyst for remarkably enhancing catalytic hydrogen evolution of hydrogen-storage materials. International Journal of Hydrogen Energy, 2020, 45, 15560-15570.	3.8	30
126	Harvesting urbach tail energy of ultrathin amorphous nickel oxide for solar-driven overall water splitting up to 680 nm. Applied Catalysis B: Environmental, 2021, 285, 119798.	10.8	30

#	Article	IF	CITATIONS
127	Comparative Study on Ignition Delay Times of C1–C4 Alkanes. Energy & Fuels, 2013, 27, 3480-3487.	2.5	28
128	Synthesis of high-performance jet fuel blends from biomass-derived 4-ethylphenol and phenylmethanol. Chemical Engineering Science, 2018, 191, 343-349.	1.9	27
129	Grain boundaries modified uniformly-conjoint metal/oxides via binder strategy as efficient bifunctional electrocatalysts. Journal of Materials Chemistry A, 2019, 7, 10010-10018.	5.2	27
130	Defected ZnWO ₄ -decorated WO ₃ nanorod arrays for efficient photoelectrochemical water splitting. RSC Advances, 2019, 9, 5492-5500.	1.7	27
131	Development of High-Energy-Density Liquid Aerospace Fuel: A Perspective. Transactions of Tianjin University, 2022, 28, 1-5.	3.3	27
132	Fe-TiO 2 and Fe 2 O 3 quantum dots co-loaded on MCM-41 for removing aqueous rose bengal by combined adsorption/photocatalysis. Chinese Journal of Catalysis, 2018, 39, 920-928.	6.9	26
133	Photoinduced cycloaddition of biomass derivatives to obtain high-performance spiro-fuel. Green Chemistry, 2019, 21, 5886-5895.	4.6	26
134	Impact of deep hydrogenation on jet fuel oxidation and deposition. Fuel, 2020, 264, 116843.	3.4	26
135	Synthesis of strained high-energy rocket bio-kerosene via cyclopropanation of myrcene. Fuel Processing Technology, 2020, 201, 106339.	3.7	26
136	Methane Dry Reforming by Ni–Cu Nanoalloys Anchored on Periclase-Phase MgAlO _{<i>x</i>} Nanosheets for Enhanced Syngas Production. ACS Applied Materials & Interfaces, 2021, 13, 48838-48854.	4.0	25
137	A shock tube and kinetic modeling study of n-butanal oxidation. Combustion and Flame, 2013, 160, 1541-1549.	2.8	24
138	Shock tube and kinetic study of C2H6/H2/O2/Ar mixtures at elevated pressures. International Journal of Hydrogen Energy, 2014, 39, 6024-6033.	3.8	24
139	Controlling surface and interface of TiO2 toward highly efficient photocatalysis. Materials Letters, 2015, 160, 576-580.	1.3	24
140	Kinetic modeling study of hydrogen addition effects on ignition characteristics of dimethyl ether at engine-relevant conditions. International Journal of Hydrogen Energy, 2015, 40, 5221-5235.	3.8	24
141	Regulating the Spin State of Fe ^{III} by Atomically Anchoring on Ultrathin Titanium Dioxide for Efficient Oxygen Evolution Electrocatalysis. Angewandte Chemie, 2020, 132, 2333-2337.	1.6	24
142	A high pressure shock tube study of 1-butene oxidation and its comparison with n -butane and alkenes. Fuel, 2015, 157, 21-27.	3.4	23
143	Synthesis of high-density liquid fuel via Diels-Alder reaction of dicyclopentadiene and lignocellulose-derived 2-methylfuran. Catalysis Today, 2019, 319, 139-144.	2.2	23
144	Fabrication of TiO ₂ nanosheets via Ti ³⁺ doping and Ag ₃ PO ₄ QD sensitization for highly efficient visible-light photocatalysis. RSC Advances, 2016, 6, 63984-63990.	1.7	22

#	Article	IF	CITATIONS
145	Zeolite catalytic synthesis of highâ€performance jetâ€fuelâ€range spiroâ€fuel by oneâ€pot Mannich–Diels–A reaction. AICHE Journal, 2020, 66, e16789.	lder 1.8	22
146	Boosting photoelectrochemical water splitting by Au@Pt modified ZnO/CdS with synergy of Au-S bonds and surface plasmon resonance. Journal of Catalysis, 2022, 408, 196-205.	3.1	22
147	Shock-Tube Measurements of Ignition Delay Times for the Ethane/Dimethyl Ether Blends. Energy & Fuels, 2013, 27, 6247-6254.	2.5	21
148	Synthesis and thermal stability of dimethyl adamantanes as high-density and high-thermal-stability fuels. Fuel, 2020, 260, 116424.	3.4	21
149	Co-conversion of lignocellulosic derivatives to jet fuel blending by an efficient hydrophobic acid resin. Applied Catalysis B: Environmental, 2021, 292, 120181.	10.8	21
150	Self-supporting NiCoP for hydrogen generation via hydrolysis of ammonia borane. Fuel, 2022, 318, 123544.	3.4	21
151	Experimental and Kinetic Study on Ignition Delay Times of Dimethyl Ether at High Temperatures. Energy & Fuels, 2015, 29, 3495-3506.	2.5	20
152	Synthesis of high-density flammable hydrocarbon as potential hypergolic fuel and ignition additive of high-density fuels. Combustion and Flame, 2020, 222, 252-258.	2.8	20
153	Donor-acceptor carbon nitride with electron-withdrawing chlorine group to promote exciton dissociation. Chinese Journal of Catalysis, 2021, 42, 1168-1175.	6.9	19
154	Manipulating Spin Polarization of Defected Co3O4 for Highly Efficient Electrocatalysis. Transactions of Tianjin University, 2022, 28, 163-173.	3.3	19
155	Shock-Tube Study on Ethylcyclohexane Ignition. Energy & Fuels, 2014, 28, 5505-5514.	2.5	18
156	Catalytic steam reforming and heat sink of high-energy-density fuels: Correlation of reaction behaviors with molecular structures. Fuel, 2021, 286, 119371.	3.4	18
157	DFT study on water oxidation on nitrogen-doped ceria oxide. Applied Surface Science, 2018, 452, 423-428.	3.1	17
158	Synthesis and comprehensive fuel properties of mono-substituted alkyl adamantanes for advanced aerospace propulsion. Fuel Processing Technology, 2021, 218, 106842.	3.7	17
159	Bifunctional core-shell nAl@MOF energetic particles with enhanced ignition and combustion performance. Chemical Engineering Journal, 2022, 430, 132909.	6.6	17
160	Rational Design of Alkynyl-Based Linear Donorâ^'π–Acceptor Conjugated Polymers with Accelerated Exciton Dissociation for Photocatalysis. Macromolecules, 2022, 55, 5412-5421.	2.2	17
161	Influence of quadricyclane additive on ignition and combustion properties of high-density JP-10 fuel. Fuel, 2020, 276, 118047.	3.4	16
162	Regioselective Synthesis of Methyl-Substituted Adamantanes for Promoting Oxidation Stability of High-Density Fuels. Energy & Fuels, 2020, 34, 4516-4524.	2.5	16

#	Article	IF	CITATIONS
163	Mechanistic insights into the thermal oxidative deposition of C10 hydrocarbon fuels. Fuel, 2021, 285, 119136.	3.4	16
164	Bimetallic phosphide decorated Mo–BiVO ₄ for significantly improved photoelectrochemical activity and stability. RSC Advances, 2019, 9, 15629-15634.	1.7	15
165	Performance characteristics of a scramjet engine using JP-10 fuel containing aluminum nanoparticles. Acta Astronautica, 2021, 185, 70-77.	1.7	15
166	Synthesis and performance of cyclopropanated pinanes with high density and high specific impulse. Fuel, 2022, 307, 121906.	3.4	15
167	Framework Zr Stabilized <scp>PtSn</scp> / <scp>Zrâ€MCM</scp> â€41 as a Promising Catalyst for Nonâ€oxidative Ethane Dehydrogenation. Chinese Journal of Chemistry, 2022, 40, 918-924.	2.6	15
168	Highly dispersed γ-Fe ₂ O ₃ embedded in nitrogen doped carbon for the efficient oxygen reduction reaction. Catalysis Science and Technology, 2019, 9, 4581-4587.	2.1	14
169	Self-photosensitized [2 + 2] cycloaddition for synthesis of high-energy-density fuels. Sustainable Energy and Fuels, 2020, 4, 911-920.	2.5	14
170	Tailoring the hetero-structure of iron oxides in the framework of nitrogen doped carbon for the oxygen reduction reaction and zinc–air batteries. Journal of Materials Chemistry A, 2020, 8, 25791-25804.	5.2	14
171	Low-temperature synthesis of ultrasmall spinel Mn Co3-O4 nanoparticles for efficient oxygen reduction. Chinese Journal of Catalysis, 2020, 41, 1818-1825.	6.9	14
172	Synthesis and Performance of Strained Multicyclic Hydrocarbons as Highly Potential High-Energy-Density Fuels. Industrial & Engineering Chemistry Research, 2021, 60, 10978-10987.	1.8	13
173	Surface states modulation of hematite photoanodes for enhancing photoelectrochemical catalysis. Chemical Engineering Science, 2022, 250, 117397.	1.9	13
174	Review on design, preparation and performance characterization of gelled fuels for advanced propulsion. Frontiers of Chemical Science and Engineering, 2022, 16, 819-837.	2.3	13
175	Fundamentals and Advances in Emerging Crystalline Porous Materials for Photocatalytic and Electrocatalytic Nitrogen Fixation. ACS Applied Energy Materials, 2022, 5, 9241-9265.	2.5	13
176	Effect of phenolic antioxidants on the thermal oxidation stability of high-energy–density fuel. Chemical Engineering Science, 2022, 247, 117056.	1.9	12
177	Synergy of Iron Doping and Cyano Groups for Enhanced Photocatalytic Hydrogen Production over C ₃ N ₄ . Chemistry - A European Journal, 2021, 27, 17628-17636.	1.7	12
178	Mechanistic insights into the thermal deposition of highly thermal-stable jet fuel. Fuel, 2020, 276, 118100.	3.4	11
179	Synthesis and Characterization of Gelled Highâ€Density Fuels with Lowâ€Molecular Mass Gellant. Propellants, Explosives, Pyrotechnics, 2020, 45, 1018-1026.	1.0	10
180	Catalytic synthesis of high-energy–density jet-fuel-range polycyclic fuel by dimerization reaction. Fuel, 2022, 308, 122077.	3.4	10

#	Article	IF	CITATIONS
181	Ni-modified MoS ₂ nanoflake arrays with stepped sites on carbon nanotubes for efficient hydrodesulfurization of coal-to-liquid fuel. Chemical Communications, 2020, 56, 5540-5543.	2.2	9
182	Dual co-catalysts decorated Zn-WO3 nanorod arrays with highly efficient photoelectrocatalytic performance. International Journal of Hydrogen Energy, 2022, 47, 13641-13653.	3.8	9
183	High energy density renewable fuels based on multicyclic sesquiterpene: Synthesis and performance. Fuel, 2022, 318, 123665.	3.4	9
184	Alkyl-adamantane as high-density endothermic fuel: Synthesis and thermal cracking performance. Fuel, 2022, 324, 124688.	3.4	9
185	Surface defect-regulated PdCu/TiO _{2â^'<i>x</i>} promoting efficient electrocatalytic nitrogen reduction. Materials Chemistry Frontiers, 2022, 6, 2190-2200.	3.2	9
186	Storage period prediction and metal compatibility of endothermic hydrocarbon fuels. Fuel, 2018, 233, 1-9.	3.4	8
187	Photocatalytic Synthesis of High-Energy-Density Fuel: Catalysts, Mechanisms, and Challenges. Transactions of Tianjin University, 2021, 27, 280-294.	3.3	8
188	Recent Progress on the Development of Carbon Nitride Based Allâ€6olid Zâ€6cheme Photocatalyst for Solar Energy Conversion Applications. Energy Technology, 2022, 10, 2000950.	1.8	7
189	Computational estimation on the propulsion performance of polycyclic hydrocarbons. Chemical Engineering Science, 2021, 246, 116874.	1.9	7
190	Shock Tube and Kinetic Modeling Study of Isobutanal Oxidation. Energy & Fuels, 2013, 27, 2804-2810.	2.5	6
191	Water Splitting: Rational Design and Construction of Cocatalysts for Semiconductorâ€Based Photoâ€Electrochemical Oxygen Evolution: A Comprehensive Review (Adv. Sci. 2/2019). Advanced Science, 2019, 6, 1970013.	5.6	6
192	The kinetic mechanism of acetylene hydrogenation to prepare ethane over FexOy clusters: A DFT study. Chemical Engineering Science, 2021, 230, 116170.	1.9	6
193	Perspective on synthesis of high-energy-density fuels: From petroleum to coal-based pathway. Chinese Journal of Chemical Engineering, 2021, 35, 83-91.	1.7	6
194	Reduced graphene oxide enhanced emulsification for one-pot synthesis of high-density jet fuel. Fuel, 2020, 275, 117962.	3.4	6
195	Surfactant-Assisted Synthesis and Photocatalytic Activity of Anatase TiO2 Nanocrystals. Science of Advanced Materials, 2017, 9, 782-789.	0.1	6
196	Synthesis of advanced fuel with density higher than 1Âg/mL by photoinduced [2Â+Â2] cycloaddition of norbornene. Fuel, 2022, 318, 123629.	3.4	6
197	Improving low-temperature properties of lignin-derived jet-fuel-ranged hydrocarbons via hydroisomerization. Catalysis Today, 2021, 365, 235-240.	2.2	5
198	High-energy-density gelled fuels with high stability and shear thinning performance. Chinese Journal of Chemical Engineering, 2022, 43, 99-109.	1.7	5

#	Article	IF	CITATIONS
199	Experimental and Modeling Study on Auto-Ignition of DME/n-Butane Blends under Engine Relevant Pressure. , 2014, , .		4
200	Structure and Activity Transition from Oxidized to Metallic Tungsten for Catalytic Hydrogenation: A Density Functional Theory Study. Journal of Physical Chemistry C, 2018, 122, 23053-23061.	1.5	4
201	Water-tolerant phosphotungstic acid catalyst for controllable synthesis of high-performance biojet fuel. Chemical Engineering Science, 2021, 238, 116592.	1.9	4
202	Thixotropic composite hydrogels based on agarose and inorganic hybrid gellants. Chinese Journal of Chemical Engineering, 2023, 54, 240-247.	1.7	4
203	Insights into the Pt (111) Surface Aid in Predicting the Selective Hydrogenation Catalyst. Catalysts, 2020, 10, 1473.	1.6	3
204	Propulsive and combustion behavior of hydrocarbon fuels containing boron nanoparticles in a liquid rocket combustor. Proceedings of the Institution of Mechanical Engineers, Part G: Journal of Aerospace Engineering, 2022, 236, 2580-2591.	0.7	3
205	Acetylene Solubility in High-Energy-Density Fuels Enhanced by Amines and Scrambled Cages. Chemistry and Technology of Fuels and Oils, 2018, 54, 599-605.	0.2	2
206	Enhanced Thermal Oxidation Stability of Jet Fuel by Deoxygenation Treatment. Chemistry and Technology of Fuels and Oils, 2020, 56, 627-637.	0.2	2
207	Synthesis of caged high-energy-density fuel as potential high-performance energetic additive for liquid aerospace fuel. Fuel Processing Technology, 2022, 229, 107179.	3.7	2
208	The dynamics and mechanism of JP-10 thermal oxidative deposition. Fuel, 2022, 321, 124093.	3.4	2
209	Experimental and Numerical Studies of Ignition Delay Time and Laminar Flame Speed of JP-10Âat Elevated Temperature Conditions. Frontiers in Energy Research, 2022, 10, .	1.2	1