Ali Abedi

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3871880/publications.pdf

Version: 2024-02-01

41323 51562 8,928 196 49 86 citations h-index g-index papers 199 199 199 8290 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Solid acid catalyzed biodiesel production from waste cooking oil. Applied Catalysis B: Environmental, 2008, 85, 86-91.	10.8	440
2	In-situ chemical oxidation: Principle and applications of peroxide and persulfate treatments in wastewater systems. Science of the Total Environment, 2016, 571, 643-657.	3.9	428
3	Solid acid catalyzed biodiesel production by simultaneous esterification and transesterification. Green Chemistry, 2006, 8, 1056.	4.6	390
4	Characterization of Canadian biomass for alternative renewable biofuel. Renewable Energy, 2010, 35, 1624-1631.	4.3	357
5	Characterization of North American Lignocellulosic Biomass and Biochars in Terms of their Candidacy for Alternate Renewable Fuels. Bioenergy Research, 2013, 6, 663-677.	2.2	295
6	Pathways of lignocellulosic biomass conversion to renewable fuels. Biomass Conversion and Biorefinery, 2014, 4, 157-191.	2.9	290
7	Biochar as an Exceptional Bioresource for Energy, Agronomy, Carbon Sequestration, Activated Carbon and Specialty Materials. Waste and Biomass Valorization, 2016, 7, 201-235.	1.8	272
8	Supercritical water gasification of biomass: a state-of-the-art review of process parameters, reaction mechanisms and catalysis. Sustainable Energy and Fuels, 2019, 3, 578-598.	2.5	210
9	Review of post-combustion carbon dioxide capture technologies using activated carbon. Journal of Environmental Sciences, 2019, 83, 46-63.	3.2	210
10	Transesterification of karanja(Pongamia pinnata) oil by solid basic catalysts. European Journal of Lipid Science and Technology, 2006, 108, 389-397.	1.0	176
11	Chemistry and Specialty Industrial Applications of Lignocellulosic Biomass. Waste and Biomass Valorization, 2021, 12, 2145-2169.	1.8	166
12	Hydrothermal pretreatment technologies for lignocellulosic biomass: A review of steam explosion and subcritical water hydrolysis. Chemosphere, 2021, 284, 131372.	4.2	160
13	Synthesis, characterization and performance evaluation of Ni/Al2O3 catalysts for reforming of crude ethanol for hydrogen production. Applied Catalysis A: General, 2005, 287, 159-175.	2.2	157
14	Epoxidation of Canola Oil with Hydrogen Peroxide Catalyzed by Acidic Ion Exchange Resin. JAOCS, Journal of the American Oil Chemists' Society, 2008, 85, 887-896.	0.8	146
15	Innovations in applications and prospects of bioplastics and biopolymers: a review. Environmental Chemistry Letters, 2022, 20, 379-395.	8.3	134
16	Insights on pathways for hydrogen generation from ethanol. Sustainable Energy and Fuels, 2017, 1, 1232-1245.	2.5	120
17	Fermentative production of butanol: Perspectives on synthetic biology. New Biotechnology, 2017, 37, 210-221.	2.4	107
18	Valorization of horse manure through catalytic supercritical water gasification. Waste Management, 2016, 52, 147-158.	3.7	104

#	Article	IF	CITATIONS
19	Synthesis of Biodiesel from Canola Oil Using Heterogeneous Base Catalyst. JAOCS, Journal of the American Oil Chemists' Society, 2007, 84, 937-943.	0.8	103
20	Breakthrough CO 2 adsorption in bio-based activated carbons. Journal of Environmental Sciences, 2015, 34, 68-76.	3.2	103
21	Effects of Confinement in Carbon Nanotubes on the Activity, Selectivity, and Lifetime of Fischerâ^Tropsch Co/Carbon Nanotube Catalysts. Journal of Chemical & Engineering Data, 2010, 55, 2757-2763.	1.0	99
22	Butanol and ethanol production from lignocellulosic feedstock: biomass pretreatment and bioconversion. Energy Science and Engineering, 2014, 2, 138-148.	1.9	94
23	Production of Diesel-Like Fuel and Other Value-Added Chemicals from Pyrolysis of Animal Fat. Energy &	2.5	89
24	Occurrence and Removal of Antiviral Drugs in Environment: A Review. Water, Air, and Soil Pollution, 2013, 224, 1.	1.1	85
25	Comparison of Hydrodenitrogenation of Basic and Nonbasic Nitrogen Compounds Present in Oil Sands Derived Heavy Gas Oil. Energy & Sands Derived Heavy Gas Oil.	2.5	84
26	A Review of Torrefaction Technology for Upgrading Lignocellulosic Biomass to Solid Biofuels. Bioenergy Research, 2021, 14, 645-669.	2.2	81
27	Biochar production, activation and adsorptive applications: a review. Environmental Chemistry Letters, 2021, 19, 2237-2259.	8.3	80
28	Selective hydrogenolysis of glycerol to propylene glycol by using Cu:Zn:Cr:Zr mixed metal oxides catalyst. Applied Catalysis A: General, 2014, 477, 147-156.	2.2	79
29	Nextâ€generation biofuels and platform biochemicals from lignocellulosic biomass. International Journal of Energy Research, 2021, 45, 14145-14169.	2.2	79
30	Enhanced CO ₂ Adsorption Using MgO-Impregnated Activated Carbon: Impact of Preparation Techniques. Industrial & Description Chemistry Research, 2016, 55, 5955-5964.	1.8	77
31	Catalytic Decomposition of Biomass Tars with Dolomites. Energy & 2009, 23, 2264-2272.	2.5	76
32	Thermal and catalytic upgrading of a biomassâ€derived oil in a dual reaction system. Canadian Journal of Chemical Engineering, 2000, 78, 343-354.	0.9	72
33	Kinetic Studies of Carbon Dioxide Reforming of Methane over Niâ^'Co/Alâ^'Mgâ^'O Bimetallic Catalyst. Industrial & Engineering Chemistry Research, 2009, 48, 677-684.	1.8	71
34	Cr-free Co–Cu/SBA-15 catalysts for hydrogenation of biomass-derived α-, β-unsaturated aldehyde to alcohol. Chinese Journal of Catalysis, 2015, 36, 933-942.	6.9	71
35	Synthesis and characterization of mesoporous aluminas with different pore sizes: Application in NiMo supported catalyst for hydrotreating of heavy gas oil. Applied Catalysis A: General, 2015, 489, 86-97.	2.2	69
36	Taguchi-based process optimization for activation of agro-food waste biochar and performance test for dye adsorption. Chemosphere, 2021, 285, 131531.	4.2	68

#	Article	IF	CITATIONS
37	Gasification of refuse derived fuel in a fixed bed reactor for syngas production. Waste Management, 2009, 29, 252-258.	3.7	64
38	Characteristic Studies on the Pyrolysis Products from Hydrolyzed Canadian Lignocellulosic Feedstocks. Bioenergy Research, 2014, 7, 174-191.	2.2	64
39	Systematic screening and modification of Ni based catalysts for hydrogen generation from supercritical water gasification of lignin. Chemical Engineering Journal, 2016, 283, 1019-1032.	6.6	64
40	Metal–organic framework-based functional catalytic materials for biodiesel production: a review. Green Chemistry, 2021, 23, 2595-2618.	4.6	60
41	Kinetics and Selectivity Study of Fischer–Tropsch Synthesis to C5+ Hydrocarbons: A Review. Catalysts, 2021, 11, 330.	1.6	56
42	Slow pyrolysis of agro-food wastes and physicochemical characterization of biofuel products. Chemosphere, 2021, 285, 131431.	4.2	56
43	Comparative kinetics of transesterification for biodiesel production from palm oil and mustard oil. Canadian Journal of Chemical Engineering, 2012, 90, 342-350.	0.9	55
44	Optimization and Kinetic Studies on Hydrogenation of Furfural to Furfuryl Alcohol over SBA-15 Supported Bimetallic Copper–Cobalt Catalyst. Catalysis Letters, 2015, 145, 816-823.	1.4	55
45	Biodiesel Production from Greenseed Canola Oil. Energy & Samp; Fuels, 2010, 24, 4652-4658.	2.5	52
46	Techno-economic evaluation and sensitivity analysis of a conceptual design for supercritical water gasification of soybean straw to produce hydrogen. Bioresource Technology, 2021, 331, 125005.	4.8	52
47	Combined Effects of EDTA and Heteroatoms (Ti, Zr, and Al) on Catalytic Activity of SBA-15 Supported NiMo Catalyst for Hydrotreating of Heavy Gas Oil. Industrial & Engineering Chemistry Research, 2014, 53, 2137-2156.	1.8	51
48	Noncatalytic Gasification of Lignin in Supercritical Water Using a Batch Reactor for Hydrogen Production: An Experimental and Modeling Study. Energy & Samp; Fuels, 2015, 29, 1776-1784.	2.5	50
49	Investigating the applicability of Athabasca bitumen as a feedstock for hydrogen production through catalytic supercritical water gasification. Journal of Environmental Chemical Engineering, 2018, 6, 182-189.	3.3	50
50	Effects of Ultrasound Treatment on the Upgradation of Heavy Gas Oil. Energy & Energy	2.5	49
51	Influence of porous characteristics of the carbon support on alkali-modified trimetallic Co–Rh–Mo sulfided catalysts for higher alcohols synthesis from synthesis gas. Applied Catalysis A: General, 2011, 393, 50-58.	2.2	49
52	Thermodynamic and Kinetic Studies of Methylene Blue Degradation Using Reactive Adsorption and Its Comparison with Adsorption. Journal of Chemical & Engineering Data, 2017, 62, 3651-3662.	1.0	49
53	Sulfur release from a model Pt/Al2O3 diesel oxidation catalyst: Temperature-programmed and step-response techniques characterization. Applied Catalysis A: General, 2010, 383, 182-191.	2.2	48
54	Studies on the Performance of a Microscale Trickle Bed Reactor Using Different Sizes of Diluent. Energy & Energ	2.5	45

#	Article	IF	CITATIONS
55	Removal of synthetic dyes from multicomponent industrial wastewaters. Reviews in Chemical Engineering, 2017, 34, 107-134.	2.3	45
56	Study on the quality of oat hull fuel pellets using bio-additives. Biomass and Bioenergy, 2017, 106, 166-175.	2.9	45
57	Cannabis: Chemistry, extraction and therapeutic applications. Chemosphere, 2022, 289, 133012.	4.2	45
58	Catalytic conversion of lignocellulosic polysaccharides to commodity biochemicals: a review. Environmental Chemistry Letters, 2021, 19, 4119-4136.	8.3	43
59	Alkali-Promoted Trimetallic Coâ^'Rhâ^'Mo Sulfide Catalysts for Higher Alcohols Synthesis from Synthesis Gas: Comparison of MWCNT and Activated Carbon Supports. Industrial & Engineering Chemistry Research, 2010, 49, 6956-6963.	1.8	42
60	Intrinsic Reaction Kinetics of Higher Alcohol Synthesis from Synthesis Gas over a Sulfided Alkali-Promoted Coâ^'Rhâ^'Mo Trimetallic Catalyst Supported on Multiwalled Carbon Nanotubes (MWCNTs). Energy & Dels, 2010, 24, 4130-4137.	2.5	41
61	Effect of Pretreatment on Physicochemical Properties and Performance of Multiwalled Carbon Nanotube Supported Cobalt Catalyst for Fischer–Tropsch Synthesis. Industrial & Engineering Chemistry Research, 2016, 55, 6049-6059.	1.8	40
62	Thermal and Kinetic Studies on Biomass Degradation <i>via</i> Thermogravimetric Analysis: A Combination of Model-Fitting and Model-Free Approach. ACS Omega, 2021, 6, 22233-22247.	1.6	39
63	A Review of Biomass Resources and Thermochemical Conversion Technologies. Chemical Engineering and Technology, 2022, 45, 791-799.	0.9	39
64	Heteropoly acids as supported solid acid catalysts for sustainable biodiesel production using vegetable oils: A review. Catalysis Today, 2022, 404, 19-34.	2.2	37
65	Kinetics and reaction mechanism of catalytic oxidation of low concentrations of hydrogen sulfide in natural gas over activated carbon. Canadian Journal of Chemical Engineering, 1998, 76, 902-914.	0.9	36
66	Utilization of green seed canola oil for biodiesel production. Journal of Chemical Technology and Biotechnology, 2006, 81, 1886-1893.	1.6	36
67	Preparation and Properties Evaluation of Biolubricants Derived from Canola Oil and Canola Biodiesel. Journal of Agricultural and Food Chemistry, 2015, 63, 3235-3242.	2.4	36
68	Supercritical water gasification of biomass in diamond anvil cells and fluidized beds. Biofuels, Bioproducts and Biorefining, 2014, 8, 728-737.	1.9	35
69	Techno-economic and life-cycle assessment of integrated Fischer-Tropsch process in ethanol industry for bio-diesel and bio-gasoline production. Energy, 2020, 195, 116985.	4.5	34
70	Hydrogen generation via supercritical water gasification of lignin using Ni-Co/Mg-Al catalysts. International Journal of Energy Research, 2017, 41, 1835-1846.	2.2	33
71	Marble slurry derived hydroxyapatite as heterogeneous catalyst for biodiesel production from soybean oil. Canadian Journal of Chemical Engineering, 2018, 96, 1873-1880.	0.9	32
72	Stabilization and solidification of arsenic and iron contaminated canola meal biochar using chemically modified phosphate binders. Journal of Hazardous Materials, 2020, 385, 121559.	6.5	31

#	Article	IF	CITATIONS
73	Catalytic Supercritical Water Gasification of Soybean Straw: Effects of Catalyst Supports and Promoters. Industrial & Engineering Chemistry Research, 2021, 60, 5770-5782.	1.8	31
74	Synthesis of n-Butyl Levulinate Using Mesoporous Zeolite H-BEA Catalysts with Different Catalytic Characteristics. Catalysis Letters, 2020, 150, 1049-1060.	1.4	30
75	Characteristics of torrefied fuel pellets obtained from co-pelletization of agriculture residues with pyrolysis oil. Biomass and Bioenergy, 2021, 150, 106139.	2.9	30
76	Enhancement of fuel and physicochemical properties of canola residues via microwave torrefaction. Energy Reports, 2021, 7, 6338-6353.	2.5	30
77	Review on Biodiesel Production from Various Feedstocks Using 12-Tungstophosphoric Acid (TPA) as a Solid Acid Catalyst Precursor. Industrial & Engineering Chemistry Research, 2014, 53, 18611-18624.	1.8	29
78	Catalytic gasification of light and heavy gas oils in supercritical water. Journal of the Energy Institute, 2020, 93, 2025-2032.	2.7	29
79	Selective Production of C ₄ Hydrocarbons from Syngas Using Feâ€Co/ZrO ₂ and SO ₄ ^{2â€"/ZrO₂ Catalysts. Canadian Journal of Chemical Engineering, 2003, 81, 230-242.}	0.9	28
80	Biomass, availability in Canada, and gasification: an overview. Biomass Conversion and Biorefinery, 2012, 2, 73-85.	2.9	28
81	Steam gasification of oat hull pellets over Ni-based catalysts: Syngas yield and tar reduction. Fuel, 2019, 254, 115585.	3.4	28
82	Evaluating Esters Derived from Mustard Oil (<i>Sinapis alba</i>) as Potential Diesel Additives. JAOCS, Journal of the American Oil Chemists' Society, 2011, 88, 391-402.	0.8	27
83	Methane oxidation hysteresis over Pt/Al2O3. Applied Catalysis A: General, 2014, 478, 91-97.	2.2	27
84	Physicochemical and Fuel Characteristics of Torrefied Agricultural Residues for Sustainable Fuel Production. Energy & En	2.5	27
85	Fischer–Tropsch Synthesis for Light Olefins from Syngas: A Review of Catalyst Development. Reactions, 2021, 2, 227-257.	0.9	27
86	Modification of epoxidised canola oil. Asia-Pacific Journal of Chemical Engineering, 2011, 6, 14-22.	0.8	26
87	Kinetics of Bitumenâ€Derived Gas Oil Upgrading Using a Commercial NiMo/Al ₂ O ₃ Catalyst. Canadian Journal of Chemical Engineering, 2004, 82, 478-487.	0.9	25
88	Process optimization and investigating the effects of torrefaction and pelletization on steam gasification of canola residue. Fuel, 2022, 323, 124239.	3.4	25
89	Deactivation Studies of Alkali-Promoted Trimetallic Coâ^'Rhâ^'Mo Sulfide Catalysts for Higher Alcohols Synthesis from Synthesis Gas. Energy & Synthesis From	2.5	24
90	Oxidative Desulfurization of Heavy Gas Oil over a Ti–TUD-1-Supported Keggin-Type Molybdenum Heteropolyacid. Energy & Description (2008) 34, 15299-15312.	2.5	24

#	Article	IF	CITATIONS
91	Adsorption of antiviral drug, acyclovir from aqueous solution on powdered activated charcoal: kinetics, equilibrium, and thermodynamic studies. Desalination and Water Treatment, 2014, 52, 4953-4968.	1.0	23
92	Selective removal of nitrogen compounds from gas oil using functionalized polymeric adsorbents: Efficient approach towards improving denitrogenation of petroleum feedstock. Chemical Engineering Journal, 2016, 295, 109-118.	6.6	23
93	Effects of Natural Additives on the Properties of Sawdust Fuel Pellets. Energy & Samp; Fuels, 2018, 32, 1863-1873.	2.5	22
94	Activity and stability of biochar in hydrogen peroxide based oxidation system for degradation of naphthenic acid. Chemosphere, 2020, 241, 125007.	4.2	22
95	Enrichment of flaxseed (Linum usitatissimum) oil with carotenoids of sea buckthorn pomace via ultrasound-assisted extraction technique. Current Research in Food Science, 2021, 4, 478-488.	2.7	22
96	Low-temperature water-gas shift reaction over Mn-promoted Cu/Al2O3 catalysts. Catalysis Letters, 2006, 112, 139-148.	1.4	21
97	Production of H ₂ and medium heating value gas via steam gasification of lignins in fixedâ€bed reactors. Canadian Journal of Chemical Engineering, 2001, 79, 913-922.	0.9	21
98	Water Removal from Ethanol Vapor by Adsorption on Canola Meal after Protein Extraction. Industrial & Engineering Chemistry Research, 2013, 52, 14429-14440.	1.8	21
99	Functionalization and Characterization of Carbon Nanohorns (CNHs) for Hydrotreating of Gas Oils. Topics in Catalysis, 2014, 57, 796-805.	1.3	21
100	Higher Alcohol Synthesis Using K-Doped CoRhMoS2/MWCNT Catalysts: Influence of Pelletization, Particle Size and Incorporation of Binders. Topics in Catalysis, 2014, 57, 538-549.	1.3	21
101	Complementary effects of torrefaction and pelletization for the production of fuel pellets from agricultural residues: A comparative study. Industrial Crops and Products, 2022, 181, 114740.	2.5	21
102	Experimental and Kinetic Studies of Aromatic Hydrogenation, Hydrodesulfurization, and Hydrodenitrogenation of Light Gas Oils Derived from Athabasca Bitumen. Industrial & Engineering Chemistry Research, 2005, 44, 7935-7944.	1.8	20
103	Immobilization of fluorenone derived π-acceptors on poly (GMA-co-EGDMA) for the removal of refractory nitrogen species from bitumen derived gas oil. Fuel, 2015, 145, 100-108.	3.4	20
104	Surface Investigation of Tungstophosphoric Acid Supported on Ordered Mesoporous Aluminosilicates for Biodiesel Synthesis. ACS Omega, 2018, 3, 14064-14075.	1.6	20
105	Oxidation of low concentrations of hydrogen sulphide: Process optimization and kinetic studies. Canadian Journal of Chemical Engineering, 1998, 76, 76-86.	0.9	19
106	Two-Stage Hydrotreating of Athabasca Heavy Gas Oil with Interstage Hydrogen Sulfide Removal:  Effect of Process Conditions and Kinetic Analyses. Industrial & Engineering Chemistry Research, 2004, 43, 5854-5861.	1.8	19
107	Utilization of green seed canola oil for in situ epoxidation. European Journal of Lipid Science and Technology, 2011, 113, 768-774.	1.0	19
108	Esterification of free fatty acids (FFA) of Green Seed Canola (GSC) oil using H-Y zeolite supported 12-Tungstophosphoric acid (TPA). Applied Catalysis A: General, 2014, 485, 99-107.	2.2	19

#	Article	lF	CITATIONS
109	Degradation of a synthetic binary dye mixture using reactive adsorption: Experimental and modeling studies. Journal of Environmental Chemical Engineering, 2018, 6, 5732-5743.	3.3	19
110	Production of anhydrous biobutanol using a biosorbent developed from oat hulls. Chemical Engineering Journal, 2019, 356, 830-838.	6.6	19
111	Comparative study on fuel characteristics and pyrolysis kinetics of corn residue-based hydrochar produced via microwave hydrothermal carbonization. Chemosphere, 2022, 291, 132787.	4.2	19
112	Production of Activated Carbon from Biochar Using Chemical and Physical Activation: Mechanism and Modeling. ACS Symposium Series, 2007, , 463-476.	0.5	18
113	Improved CO, hydrocarbon and NO oxidation performance using zone-coated Pt-based catalysts. Catalysis Today, 2013, 207, 220-226.	2.2	18
114	Mechanistic Kinetic Modeling of Oxidative Steam Reforming of Bioethanol for Hydrogen Production over Rh–Ni/CeO ₂ –ZrO ₂ Catalyst. Industrial & Diagram of the Engineering Chemistry Research, 2016, 55, 86-98.	1.8	18
115	Kinetic modeling, mechanistic, and thermodynamic studies of HPW-MAS-9 catalysed transesterification reaction for biodiesel synthesis. Fuel Processing Technology, 2019, 196, 106164.	3.7	18
116	EFFECT OF PRETREATMENT CONDITIONS ON STRUCTURAL CHARACTERISTICS OF WHEAT STRAW. Chemical Engineering Communications, 2013, 200, 1251-1259.	1.5	17
117	Physiochemical characterization and support interaction of aluminaâ€supported heteropolyacid catalyst for biodiesel production. Asia-Pacific Journal of Chemical Engineering, 2018, 13, e2249.	0.8	16
118	Performance of Promoted Iron/CNT Catalyst for Fischerâ€"Tropsch Synthesis: Influence of Pellet Shapes and Binder Loading. Energy & Shapes and Binder Loading.	2.5	15
119	Agricultural byproducts-based biosorbents for purification of bioalcohols: a review. Bioresources and Bioprocessing, 2018, 5, .	2.0	15
120	Adsorptive desulfurization through charge-transfer complex using mesoporous adsorbents. Fuel, 2020, 269, 117379.	3.4	15
121	Optimization studies for hydrothermal gasification of partially burnt wood from forest fires for hydrogen-rich syngas production using Taguchi experimental design. Environmental Pollution, 2021, 283, 117040.	3.7	15
122	Pelletization of torrefied canola residue: Effects of microwave power, residence time and bio-additives on fuel pellet quality. Fuel, 2022, 312, 122728.	3.4	15
123	Experimental and Modeling Studies of Torrefaction of Spent Coffee Grounds and Coffee Husk: Effects on Surface Chemistry and Carbon Dioxide Capture Performance. ACS Omega, 2022, 7, 638-653.	1.6	15
124	Removal of Nitric Oxide over Saskatchewan Lignite and its Derivatives. Catalysis Letters, 2006, 108, 1-5.	1.4	14
125	Synthesis of novel polymer poly(glycidyl methacrylate) incorporated with tetranitrofluorenone for selective removal of neutral nitrogen species from bitumen-derived heavy gas oil. Fuel Processing Technology, 2013, 106, 483-489.	3.7	14
126	Modified volume expansion method for measuring gas holdup. Canadian Journal of Chemical Engineering, 2002, 80, 194-199.	0.9	13

#	Article	IF	CITATIONS
127	Performances of Coâ^'W/γ-Al2O3Catalysts on Hydrotreatment of Light Gas Oil Derived from Athabasca Bitumen. Industrial & Engineering Chemistry Research, 2007, 46, 4778-4786.	1.8	13
128	Morphology and deactivation behaviour of Co–Ru/γâ€Al ₂ O ₃ Fischer–Tropsch synthesis catalyst. Canadian Journal of Chemical Engineering, 2008, 86, 1070-1080.	0.9	13
129	Steam gasification of meat and bone meal in a twoâ€stage fixedâ€bed reactor system. Asia-Pacific Journal of Chemical Engineering, 2011, 6, 71-77.	0.8	13
130	Adsorption optimization of acyclovir on prepared activated carbon. Canadian Journal of Chemical Engineering, 2014, 92, 1627-1635.	0.9	13
131	Enhancement of sulfur and nitrogen removal from heavy gas oil by using polymeric adsorbent followed by hydrotreatment. Fuel, 2018, 226, 127-136.	3.4	13
132	Catalytic hydrodeoxygenation of bioâ€oil model compound for production of fuel grade oil. Asia-Pacific Journal of Chemical Engineering, 2019, 14, e2317.	0.8	13
133	Statistical Optimization of Process Variables for Methane Conversion over Znâ€Mo/Hâ€ZSMâ€5 Catalysts in the Presence of Methanol. Energy Technology, 2013, 1, 157-165.	1.8	12
134	Synthesis and application of functionalized polymers for the removal of nitrogen and sulfur species from gas oil. Fuel Processing Technology, 2015, 131, 473-482.	3.7	12
135	Application of Ni-Co/Mg-Al Catalyst System for Hydrogen Production via Supercritical Water Gasification of Lignocellulosic Biomass. Catalysis Letters, 2016, 146, 2596-2605.	1.4	12
136	Pyrolysis kinetics and activation thermodynamic parameters of exhausted coffee residue and coffee husk using thermogravimetric analysis. Canadian Journal of Chemical Engineering, 2021, 99, 1683-1695.	0.9	12
137	Synthesis and Characterization of Functionalized Poly(glycidyl methacrylate)-Based Particles for the Selective Removal of Nitrogen Compounds from Light Gas Oil: Effect of Linker Length. Energy & Energy & Fuels, 2015, 29, 1881-1891.	2.5	11
138	Selective Water Removal by Sorption from Butanol–Water Vapor Mixtures: Analyses of Key Operating Parameters and Site Energy Distribution. Energy & Samp; Fuels, 2017, 31, 5193-5202.	2.5	11
139	Meso-Structured HPW-MAS-7 and HPW-MAS-9 Composite Catalysts for Biodiesel Synthesis from Unrefined Green Seed Canola Oil. Industrial & Engineering Chemistry Research, 2019, 58, 15772-15786.	1.8	11
140	Effects of Structure and Particle Size of Iron, Cobalt and Ruthenium Catalysts on Fischer–Tropsch Synthesis. Reactions, 2021, 2, 62-77.	0.9	11
141	Optimization of olefins' yield in Fischer-Tropsch synthesis using carbon nanotubes supported iron catalyst with potassium and molybdenum promoters. Applied Catalysis A: General, 2022, 643, 118759.	2.2	11
142	Carbon monoxide hydrogenation over cobalt catalyst in a tubeâ€wall reactor: Part 1. Experimental studies. Canadian Journal of Chemical Engineering, 1992, 70, 269-277.	0.9	10
143	Hydrogen Yield from Low Temperature Steam Reforming of Ethanol. Canadian Journal of Chemical Engineering, 2007, 85, 92-100.	0.9	10
144	Catalytic Vicinal Diacylation of Epoxidized Triglycerides in Canola Oil. JAOCS, Journal of the American Oil Chemists' Society, 2015, 92, 1365-1378.	0.8	10

#	Article	IF	Citations
145	Hydrotreatment Followed by Oxidative Desulfurization and Denitrogenation to Attain Low Sulphur and Nitrogen Bitumen Derived Gas Oils. Catalysts, 2018, 8, 645.	1.6	10
146	Design and Preparation of Ni-Co Bimetallic Nanocatalyst for Carbon Dioxide Reforming of Methane. ACS Symposium Series, 2012, , 195-221.	0.5	9
147	Mordenite‶ype Zeolite from Waste Coal Fly Ash: Synthesis, Characterization and Its Application as a Sorbent in Metal Ions Removal. ChemistrySelect, 2020, 5, 1193-1198.	0.7	9
148	Hydrothermal flames for subaquatic, terrestrial and extraterrestrial applications. Journal of Hazardous Materials, 2022, 424, 127520.	6.5	9
149	Extraction of Sugars and Cellulose Fibers from <i>Cannabis</i> Stems by Hydrolysis, Pulping, and Bleaching. Chemical Engineering and Technology, 2022, 45, 962-970.	0.9	9
150	Nonâ€selective hydrolysis of tuna fish oil for producing free fatty acids containing docosahexaenoic acid. Canadian Journal of Chemical Engineering, 2014, 92, 344-354.	0.9	8
151	The Impact of Process Parameters on the Deposition of Fines Present in Bitumen-Derived Gas Oil on Hydrotreating Catalyst. Energy & Energy	2.5	8
152	Mesoporous Adsorbents for Desulfurization of Model Diesel Fuel: Optimization, Kinetic, and Thermodynamic Studies. Fuels, 2020, 1, 47-58.	1.3	8
153	Direct oxidation of hydrogen sulphide to sulphur using impregnated activated carbon catalysts. Canadian Journal of Chemical Engineering, 2008, 86, 768-777.	0.9	7
154	Experimental and Kinetics Studies of AromaticÂHydrogenation in a Two-Stage Hydrotreating Process using NiMo/Al2O3 andÂNiW/Al2O3 Catalysts. Canadian Journal of Chemical Engineering, 2006, 84, 572-580.	0.9	7
155	DRIFT Studies of Adsorbed CO Over Sulfided K–Rh–Mo/Al2O3 Catalysts: Detection of Rh–Mo–S Phase. Catalysis Letters, 2009, 131, 203-212.	1.4	7
156	Investigating carbon monoxide and propene oxidation on a platinum diesel oxidation catalyst. Canadian Journal of Chemical Engineering, 2014, 92, 1496-1505.	0.9	7
157	Ï€-Acceptor-functionalized particles: Synthesis, characterization and effect of cross-linking agents on adsorptive removal of nitrogen- and sulfur-compounds from light gas oil. Journal of Industrial and Engineering Chemistry, 2016, 44, 43-51.	2.9	7
158	Higher Alcohols Synthesis over Carbon Nanohorn-Supported KCoRhMo Catalyst: Pelletization and Kinetic Modeling. Industrial & Engineering Chemistry Research, 2018, 57, 5517-5528.	1.8	7
159	Comparative Studies of Carbon Nanomaterial and γ-Alumina as Supports for the Ni–Mo Catalyst in Hydrotreating of Gas Oils. Energy & Fuels, 2021, 35, 6153-6166.	2.5	7
160	Adsorption of carbamazepine from water by hydrothermally and steam activated agricultural by-products: equilibrium, site energy, and thermodynamic studies. Chemical Engineering Communications, 2022, 209, 852-867.	1.5	7
161	Performance of geopolymer as adsorbent on desulphurization of heavy gas oil. Canadian Journal of Chemical Engineering, 2021, 99, 2355-2367.	0.9	7
162	Comparative Catalytic Performance Study of 12-Tungstophosphoric Heteropoly Acid Supported on Mesoporous Supports for Biodiesel Production from Unrefined Green Seed Canola Oil. Catalysts, 2022, 12, 658.	1.6	7

#	Article	IF	Citations
163	Recovery, characterization and conceptual modelling of Nonâ€Bituminous organic materials from oil sands. Canadian Journal of Chemical Engineering, 1997, 75, 379-390.	0.9	6
164	Effect of citric acid and starch as emulsifier on phase formation and crystallite size of lanthanum oxide nanoparticles. Crystal Research and Technology, 2013, 48, 355-362.	0.6	6
165	Deposition of fine particles of gas oil on hydrotreating catalyst: Impact of process parameters and filtration trends. Fuel Processing Technology, 2018, 171, 223-231.	3.7	6
166	Catalysis for the Production of Sustainable Fuels and Chemicals. Catalysts, 2020, 10, 388.	1.6	6
167	Catalytic and Noncatalytic Upgrading of Bio-Oil to Synthetic Fuels: An Introductory Review. ACS Symposium Series, 2021, , 1-28.	0.5	6
168	Solvent-Free Benzylation of Glycerol by Benzyl Alcohol Using Heteropoly Acid Impregnated on K-10 Clay as Catalyst. Catalysts, 2021, 11, 34.	1.6	6
169	Higher Alcohols Synthesis: Experimental and Process Parameters Study over a CNH-Supported KCoRhMo Catalyst. Industrial & Engineering Chemistry Research, 2017, 56, 13552-13565.	1.8	5
170	Drying of nonpolar gas in a pressure swing adsorption process using canola meal biosorbents. Asia-Pacific Journal of Chemical Engineering, 2018, 13, e2232.	0.8	5
171	Reactive adsorption of Safranin O: surface – pore diffusion modeling and degradation study. Water Science and Technology, 2019, 80, 665-674.	1.2	5
172	Influence of Catalyst Acidity on Fine Particle Deposition during Hydrotreating of Bitumen-Derived Heavy Gas Oil. Energy & Energy	2.5	5
173	Title is missing!. Catalysis Letters, 2003, 86, 221-227.	1.4	4
174	Kinetics study on cntâ€supported RuKCo FTS catalyst in a fixed bed reactor. Canadian Journal of Chemical Engineering, 2011, 89, 1441-1450.	0.9	4
175	Influence of pretreatment conditions on composition of liquid hydrolysate and subsequent enzymatic saccharification of remaining solids. Canadian Journal of Chemical Engineering, 2013, 91, 1223-1228.	0.9	4
176	Effect of Thermal Degradation on the CO, C ₃ H ₆ , and NO Oxidation Performance of Pt/Al ₂ O ₃ with a Zoned Distribution of Pt. Industrial & Engineering Chemistry Research, 2014, 53, 5692-5700.	1.8	4
177	Selective adsorption of water from aqueous butanol solution using canola-meal-based biosorbents. Chemical Engineering Communications, 2018, 205, 637-646.	1.5	4
178	A kinetic model for methane emission oxidation over Pd-Pt bimetallic monolith catalysts. International Journal of Energy Research, 2018, 42, 4642-4653.	2.2	4
179	Dynamics of Water Adsorption from Butanol–Water Vapor in a Biosorbent Packed Column. Industrial & Lamp; Engineering Chemistry Research, 2019, 58, 15619-15627.	1.8	4
180	Dynamic Study of Butanol and Water Adsorption onto Oat Hull: Experimental and Simulated Breakthrough Curves. Energy & Samp; Fuels, 2019, 33, 9835-9842.	2.5	4

#	Article	IF	CITATIONS
181	Modelling of H 2 consumption and process optimization for hydrotreating of light gas oils. Canadian Journal of Chemical Engineering, 2019, 97, 1828-1837.	0.9	4
182	Synthesis and Application of Metallosilicate Supports for Cobalt-Based Fischer–Tropsch Synthesis Catalysts. Energy &	2.5	4
183	Hydroprocessing of oleic acid for production of jet fuel range hydrocarbons over Sn(1)â€Fe(3)â€Cu(13)/SiO ₂ â€Al ₂ O ₃ catalyst: Process parameters optimization, kinetics, and thermodynamic study. Asia-Pacific Journal of Chemical Engineering, 2021, 16, e2621.	0.8	3
184	Bioconversion of wheat straw lignocellulosic sugars to ethanol by recombinant <i>Escherichia coli</i> . Journal of Renewable and Sustainable Energy, 2012, 4, .	0.8	2
185	Novelty of <i>Penicillium camembertii</i> Lipase Supported on Glutaraldehyde Activated-SBA-15 Mesoporous Silica for Mono-Esterification of Bioglycerol in Non-Aqueous Media. International Journal of Chemical Reactor Engineering, 2016, 14, 919-928.	0.6	2
186	Adsorptive Removal of Nitrogen, Sulfur, and Aromatic Compounds from Gas Oil by Poly(glycidy) Tj ETQq0 0 0 rgBT 2430-2438.	「/Overloch 2.5	2 10 Tf 50 5
187	Equilibrium Study and Analysis of Site Energy Distribution of Butanol Sorption on a Biosorbent. Energy & Energy	2.5	2
188	Syngas Conversion to Higher Alcohols: Application of novel K-Promoted CoRhMo Catalysts Supported over Carbon Nanohorns and its by-Products. International Journal of Petrochemical Science & Engineering, 2017, 2, .	0.2	2
189	Extraction and fractionation of polyunsaturated fatty acids from <i>Mortierella</i> sp. using supercritical fluid: experimental and kinetic studies. Asia-Pacific Journal of Chemical Engineering, 2014, 9, 507-518.	0.8	1
190	Graft Copolymerization of Glycidyl Methacrylate and Ethylene Glycol Dimethacrylate on Alumina for the Removal of Nitrogen and Sulfur Compounds from Gas Oil. Industrial & Engineering Chemistry Research, 2016, 55, 9408-9415.	1.8	1
191	Deposition of Fine Particles during Hydrotreating of Oil Sands Bitumen-Derived Heavy Gas Oil in a Packed Bed Reactor: Impact of Process Parameters and Surface Charge. Industrial & Engineering Chemistry Research, 0, , .	1.8	1
192	Insights into the integrated effects of polymeric pretreatment and catalytic hydrotreatment of light gas oil. Asia-Pacific Journal of Chemical Engineering, 2019, 14, e2285.	0.8	0
193	Performance of Low-Cost Carbon-Based Adsorbent on Desulfurization of Heavy Gas Oil. ACS Symposium Series, 2021, , 175-187.	0.5	O
194	Subcritical and Supercritical Water Treatments for Bio-Oil Production and Upgrading. ACS Symposium Series, 2021, , 69-87.	0.5	0
195	ICONE23-1734 HITACHI-GE-SMALL MODULAR REACTOR BALANCE OF PLANT THERMAL UTILIZATION STUDY. The Proceedings of the International Conference on Nuclear Engineering (ICONE), 2015, 2015.23, _ICONE23-1ICONE23-1.	0.0	O
196	Eco-friendly synthesis of porous activated carbon from agro-food waste for sustainable energy harvesting sources. , 0, , .		0