Sabato D'auria

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3871726/publications.pdf Version: 2024-02-01

SARATO D'ALIDIA

#	Article	IF	CITATIONS
1	Radiative Decay Engineering. Analytical Biochemistry, 2002, 301, 261-277.	2.4	642
2	Intrinsic Fluorescence from DNA Can Be Enhanced by Metallic Particles. Biochemical and Biophysical Research Communications, 2001, 286, 875-879.	2.1	199
3	Release of the self-quenching of fluorescence near silver metallic surfaces. Analytical Biochemistry, 2003, 320, 13-20.	2.4	193
4	The Fluorescence Emission of the Apo-glucose Oxidase from Aspergillus niger as Probe to Estimate Glucose Concentrations. Biochemical and Biophysical Research Communications, 1999, 263, 550-553.	2.1	73
5	A Thermophilic Apoglucose Dehydrogenase as Nonconsuming Glucose Sensor. Biochemical and Biophysical Research Communications, 2000, 274, 727-731.	2.1	69
6	Enzyme fluorescence as a sensing tool: new perspectives in biotechnology. Current Opinion in Biotechnology, 2001, 12, 99-104.	6.6	63
7	Effects of temperature and SDS on the structure of β-glycosidase from the thermophilic archaeon Sulfolobus solfataricus. Biochemical Journal, 1997, 323, 833-840.	3.7	60
8	Fluorescence-Based Biosensors. Methods in Molecular Biology, 2012, 875, 193-216.	0.9	60
9	A New Competitive Fluorescence Assay for the Detection of Patulin Toxin. Analytical Chemistry, 2007, 79, 751-757.	6.5	59
10	Proteins from extremophiles as stable tools for advanced biotechnological applications of high social interest. Journal of the Royal Society Interface, 2007, 4, 183-191.	3.4	58
11	A High Sensitivity Biosensor to detect the presence of perfluorinated compounds in environment. Talanta, 2018, 178, 955-961.	5.5	57
12	Porous silicon-based optical microsensor for the detection of l-glutamine. Biosensors and Bioelectronics, 2006, 21, 1664-1667.	10.1	55
13	Effects of Metallic Silver Particles on Resonance Energy Transfer Between Fluorophores Bound to DNA. Journal of Fluorescence, 2003, 13, 69-77.	2.5	52
14	Glutamine-Binding Protein fromEscherichiacoliSpecifically Binds a Wheat Gliadin Peptide Allowing the Design of a New Porous Silicon-Based Optical Biosensorâ€. Journal of Proteome Research, 2006, 5, 1241-1245.	3.7	46
15	Microbial carbohydrate esterases in cold adapted environments. Gene, 2008, 410, 234-240.	2.2	44
16	A novel fluorescence polarization assay for determination of penicillin G in milk. Food Chemistry, 2016, 190, 381-385.	8.2	44
17	How do plants sense volatiles sent by other plants?. Trends in Plant Science, 2022, 27, 29-38.	8.8	44
18	Myoglobin as a New Fluorescence Probe to Sense H2S. Protein and Peptide Letters, 2011, 18, 282-286.	0.9	42

#	Article	IF	CITATIONS
19	A Novel Fluorescence Competitive Assay for Glucose Determinations by Using a Thermostable Glucokinase from the Thermophilic Microorganism Bacillus stearothermophilus. Analytical Biochemistry, 2002, 303, 138-144.	2.4	40
20	The psychrophilic bacterium Pseudoalteromonas halosplanktis TAC125 possesses a gene coding for a cold-adapted feruloyl esterase activity that shares homology with esterase enzymes from Î ³ -proteobacteria and yeast. Gene, 2007, 397, 51-57.	2.2	38
21	Glucose biosensors as models for the development of advanced protein-based biosensors. Molecular BioSystems, 2005, 1, 354.	2.9	37
22	Structure-function studies on \hat{l}^2 -glycosidase from Sulfolobus solfataricus. Molecular bases of thermostability. Biochimie, 1998, 80, 949-957.	2.6	36
23	A near-infrared fluorescence assay method to detect patulin in food. Analytical Biochemistry, 2015, 481, 55-59.	2.4	35
24	High-Affinity Binding of Cadmium Ions by Mouse Metallothionein Prompting the Design of a Reversed-Displacement Protein-Based Fluorescence Biosensor for Cadmium Detection. Analytical Chemistry, 2007, 79, 5760-5762.	6.5	34
25	Emergent Biosensing Technologies Based on Fluorescence Spectroscopy and Surface Plasmon Resonance. Sensors, 2021, 21, 906.	3.8	34
26	Nanostructured Silver-Based Surfaces: New Emergent Methodologies for an Easy Detection of Analytes. ACS Applied Materials & amp; Interfaces, 2009, 1, 2909-2916.	8.0	33
27	Long-Distance FRET Analysis: A Monte Carlo Simulation Study. Journal of Physical Chemistry B, 2011, 115, 10120-10125.	2.6	33
28	Hydrophobic interactions and ionic networks play an important role in thermal stability and denaturation mechanism of the porcine odorantâ€binding protein. Proteins: Structure, Function and Bioinformatics, 2008, 71, 35-44.	2.6	32
29	A Loose Domain Swapping Organization Confers a Remarkable Stability to the Dimeric Structure of the Arginine Binding Protein from Thermotoga maritima. PLoS ONE, 2014, 9, e96560.	2.5	31
30	Binding of glutamine to glutamine-binding protein from Escherichia coli induces changes in protein structure and increases protein stability. Proteins: Structure, Function and Bioinformatics, 2004, 58, 80-87.	2.6	30
31	A Protein Biosensor for Lactate. Analytical Biochemistry, 2000, 283, 83-88.	2.4	29
32	The role of calcium in the conformational dynamics and thermal stability of the D-galactose/D-glucose-binding protein from Escherichia coli. Proteins: Structure, Function and Bioinformatics, 2005, 61, 184-195.	2.6	29
33	Stability and conformational dynamics of metallothioneins from the antarctic fishNotothenia coriiceps and mouse. Proteins: Structure, Function and Bioinformatics, 2002, 46, 259-267.	2.6	27
34	Unfolding and Refolding of the Glutamine-Binding Protein fromEscherichia coliand Its Complex with Glutamine Induced by Guanidine Hydrochlorideâ€. Biochemistry, 2005, 44, 5625-5633.	2.5	27
35	Stability and Dynamics of the Porcine Odorant-Binding Protein. Biochemistry, 2007, 46, 11120-11127.	2.5	27
36	The esterase from the thermophilic eubacteriumBacillus acidocaldarius: Structural-functional relationship and comparison with the esterase from the hyperthermophilic archaeonArchaeoglobus fulgidus. Proteins: Structure, Function and Bioinformatics, 2000, 40, 473-481.	2.6	26

#	Article	IF	CITATIONS
37	Conformational stability and domain coupling in D-glucose/D-galactose-binding protein from Escherichia coli. Biochemical Journal, 2004, 381, 97-103.	3.7	26
38	Writing 3D protein nanopatterns onto a silicon nanosponge. Lab on A Chip, 2005, 5, 1048.	6.0	26
39	A Fluorescence Polarization Assay To Detect Steroid Hormone Traces in Milk. Journal of Agricultural and Food Chemistry, 2015, 63, 9159-9164.	5.2	26
40	Theoretical model of the three-dimensional structure of a sugar-binding protein from Pyrococcus horikoshii: structural analysis and sugar-binding simulations. Biochemical Journal, 2004, 380, 677-684.	3.7	25
41	Binding of Glucose to the d-Galactose/d-Glucose–Binding Protein from Escherichia coli Restores the Native Protein Secondary Structure and Thermostability That Are Lost upon Calcium Depletion. Journal of Biochemistry, 2006, 139, 213-221.	1.7	25
42	Fluorescence Correlation Spectroscopy Assay for Gliadin in Food. Analytical Chemistry, 2007, 79, 4687-4689.	6.5	25
43	Detection of naphthalene in sea-water by a label-free plasmonic optical fiber biosensor. Talanta, 2019, 194, 289-297.	5.5	25
44	Structural characterization and thermal stability of Notothenia coriiceps metallothionein. Biochemical Journal, 2001, 354, 291-299.	3.7	24
45	Structural and Thermal Stability Characterization of Escherichia colid-Galactose/d-Glucose-Binding Protein. Biotechnology Progress, 2008, 20, 330-337.	2.6	24
46	Perturbation of conformational dynamics, enzymatic activity, and thermostability of β-glycosidase from archaeonSulfolobus solfataricus by pH and sodium dodecyl sulfate detergent. Proteins: Structure, Function and Bioinformatics, 1997, 27, 71-79.	2.6	23
47	Protein-Based Biosensors for Diabetic Patients. Journal of Fluorescence, 2004, 14, 491-498.	2.5	23
48	Absorption into fluorescence. A method to sense biologically relevant gas molecules. Nanoscale, 2011, 3, 298-302.	5.6	23
49	Easy to Use Plastic Optical Fiber-Based Biosensor for Detection of Butanal. PLoS ONE, 2015, 10, e0116770.	2.5	23
50	Amino acid transport in thermophiles: characterization of an arginine-binding protein in Thermotoga maritima. Molecular BioSystems, 2009, 6, 142-151.	2.9	22
51	D-galactose/D-glucose-binding Protein from Escherichia coli as Probe for a Non-consuming Glucose Implantable Fluorescence Biosensor. Sensors, 2007, 7, 2484-2491.	3.8	21
52	Functional and Structural Properties of the Homogeneous β-Glycosidase from the Extreme Thermoacidophilic ArchaeonSulfolobus solfataricusExpressed inSaccharomyces cerevisiae. Protein Expression and Purification, 1996, 7, 299-308.	1.3	20
53	D-Trehalose/D-maltose-binding protein from the hyperthermophilic archaeon Thermococcus litoralis: The binding of trehalose and maltose results in different protein conformational states. Proteins: Structure, Function and Bioinformatics, 2006, 63, 754-767.	2.6	20
54	Amino acid transport in thermophiles: characterization of an arginine-binding protein in Thermotoga maritima. 2. Molecular organization and structural stability. Molecular BioSystems, 2010, 6, 687.	2.9	20

#	Article	lF	CITATIONS
55	Extending Fol̀^rster resonance energy transfer measurements beyond 100 AÌŠ using common organic fluorophores: enhanced transfer in the presence of multiple acceptors. Journal of Biomedical Optics, 2012, 17, 011006.	2.6	20
56	The thermophilic esterase fromArchaeoglobus fulgidus: Structure and conformational dynamics at high temperature. , 2000, 38, 351-360.		19
57	The Tryptophan Phosphorescence of Porcine and Mutant Bovine Odorant-Binding Proteins: A Probe for the Local Protein Structure and Dynamics. Journal of Proteome Research, 2008, 7, 1151-1158.	3.7	19
58	Tumor-specific protein human galectin-1 interacts with anticancer agents. Molecular BioSystems, 2009, 5, 1331.	2.9	19
59	Fluorescence polarization assay to detect the presence of traces of ciprofloxacin. Scientific Reports, 2020, 10, 4550.	3.3	19
60	On the Effect of Sodium Dodecyl Sulfate on the Structure of Â-Galactosidase from Escherichia coli. A Fluorescence Study. Journal of Biochemistry, 2001, 130, 13-18.	1.7	18
61	Resonant cavity enhanced optical microsensor for molecular interactions based on porous silicon. Physica Status Solidi (A) Applications and Materials Science, 2006, 203, 886-891.	1.8	18
62	A new competitive fluorescence immunoassay for detection of Listeria monocytogenes. Analytical Methods, 2012, 4, 4187.	2.7	18
63	Structure and Stability of a Rat Odorant-Binding Protein: Another Brick in the Wall. Journal of Proteome Research, 2009, 8, 4005-4013.	3.7	17
64	Biophotonic Ring Resonator for Ultrasensitive Detection of DMMP As a Simulant for Organophosphorus Agents. Analytical Chemistry, 2014, 86, 5125-5130.	6.5	17
65	Sweet Sensor for the Detection of Aflatoxin M1 in Whole Milk. ACS Omega, 2019, 4, 12803-12807.	3.5	17
66	Thermal denaturation pathway of starch phosphorylase from <i>Corynebacterium callunae</i> : Oxyanion binding provides the glue that efficiently stabilizes the dimer structure of the protein. Protein Science, 2000, 9, 1149-1161.	7.6	16
67	A Strategic Fluorescence Labeling ofd-Galactose/d-Glucose-Binding Protein fromEscherichiacoliHelps to Shed Light on the Protein Structural Stability and Dynamics. Journal of Proteome Research, 2007, 6, 4119-4126.	3.7	16
68	Wild-Type and Mutant Bovine Odorant-Binding Proteins To Probe the Role of the Quaternary Structure Organization in the Protein Thermal Stability. Journal of Proteome Research, 2008, 7, 5221-5229.	3.7	16
69	Novel biosensors based on optimized glycine oxidase. FEBS Journal, 2014, 281, 3460-3472.	4.7	16
70	A Rapid and Sensitive Assay for the Detection of Benzylpenicillin (PenG) in Milk. PLoS ONE, 2015, 10, e0132396.	2.5	16
71	Structure/function of KRAB repression domains: Structural properties of KRAB modules inferred from hydrodynamic, circular dichroism, and FTIR spectroscopic analyses. Proteins: Structure, Function and Bioinformatics, 2005, 62, 604-616.	2.6	15
72	Fluorescence Properties of Glutamine-Binding Protein fromEscherichia coliand Its Complex with Glutamine. Journal of Proteome Research, 2005, 4, 417-423.	3.7	15

#	Article	IF	CITATIONS
73	Structure and Dynamics of Cold-Adapted Enzymes as Investigated by Phosphorescence Spectroscopy and Molecular Dynamics Studies. 2. The Case of an Esterase from Pseudoalteromonas haloplanktis. Journal of Physical Chemistry B, 2009, 113, 13171-13178.	2.6	15
74	Structure and Dynamics of Cold-Adapted Enzymes as Investigated by FT-IR Spectroscopy and MD. The Case of an Esterase from <i>Pseudoalteromonas haloplanktis</i> . Journal of Physical Chemistry B, 2009, 113, 7753-7761.	2.6	15
75	Engineering a switch-based biosensor for arginine using a Thermotoga maritima periplasmic binding protein. Analytical Biochemistry, 2017, 525, 60-66.	2.4	15
76	Enzymes as Sensors. Methods in Enzymology, 2017, 589, 115-131.	1.0	15
77	A Thermostable Sugar-Binding Protein from the Archaeon Pyrococcus horikoshii as a Probe for the Development of a Stable Fluorescence Biosensor for Diabetic Patients. Biotechnology Progress, 2004, 20, 1572-1577.	2.6	14
78	The Odorant-Binding Protein from Canis familiaris: Purification, Characterization and New Perspectives in Biohazard Assessment. Protein and Peptide Letters, 2006, 13, 349-352.	0.9	14
79	Glutamine-Binding Protein fromEscherichiaColiSpecifically Binds a Wheat Gliadin Peptide. 2. Resonance Energy Transfer Studies Suggest a New Sensing Approach for an Easy Detection of Wheat Gliadin. Journal of Proteome Research, 2006, 5, 2083-2086.	3.7	13
80	Tryptophan Phosphorescence Studies of thed-Galactose/d-Glucose-Binding Protein fromEscherichiacoliProvide a Molecular Portrait with Structural and Dynamics Features of the Protein. Journal of Proteome Research, 2007, 6, 1306-1312.	3.7	13
81	Mutant bovine odorantâ€binding protein: Temperature affects the protein stability and dynamics as revealed by infrared spectroscopy and molecular dynamics simulations. Proteins: Structure, Function and Bioinformatics, 2008, 72, 769-778.	2.6	13
82	New Insight in Protein–Ligand Interactions. 2. Stability and Properties of Two Mutant Forms of the <scp>d</scp> -Galactose/ <scp>d</scp> -Glucose-Binding Protein from <i>E. coli</i> . Journal of Physical Chemistry B, 2011, 115, 9022-9032.	2.6	13
83	New Insight into Proteinâ^Ligand Interactions. The Case of thed-Galactose/d-Glucose-Binding Protein fromEscherichia coli. Journal of Physical Chemistry B, 2011, 115, 2765-2773.	2.6	13
84	Periplasmic Binding Proteins in Thermophiles: Characterization and Potential Application of an Arginine-Binding Protein from Thermotoga maritima: A Brief Thermo-Story. Life, 2013, 3, 149-160.	2.4	13
85	Proline 235 plays a key role in the regulation of the oligomeric states of Thermotoga maritima Arginine Binding Protein. Biochimica Et Biophysica Acta - Proteins and Proteomics, 2016, 1864, 814-824.	2.3	13
86	The porcine odorant-binding protein as molecular probe for benzene detection. PLoS ONE, 2018, 13, e0202630.	2.5	13
87	Enzymes and proteins from extremophiles as hyperstable probes in nanotechnology: the use of D-trehalose/D-maltose-binding protein from the hyperthermophilic archaeon Thermococcus litoralis for sugars monitoring. Extremophiles, 2008, 12, 69-73.	2.3	12
88	Crystallization and preliminary X-ray crystallographic analysis of ligand-free and arginine-bound forms ofThermotoga maritimaarginine-binding protein. Acta Crystallographica Section F: Structural Biology Communications, 2011, 67, 1462-1465.	0.7	12
89	Extending the range of FRET—the Monte Carlo study of the antenna effect. Journal of Molecular Modeling, 2013, 19, 4195-4201.	1.8	12
90	A Diagnostic Device for In-Situ Detection of Swine Viral Diseases: The SWINOSTICS Project. Sensors, 2019, 19, 407.	3.8	12

#	Article	IF	CITATIONS
91	The differences in the microenvironment of the two tryptophan residues of the glutamineâ€binding protein from <i>Escherichia coli</i> shed light on the binding properties and the structural dynamics of the protein. Proteins: Structure, Function and Bioinformatics, 2008, 71, 743-750.	2.6	11
92	Carbon nanotube-based biosensors. Journal of Physics Condensed Matter, 2008, 20, 474201.	1.8	11
93	Human galectinâ€3 interacts with two anticancer drugs. Proteomics, 2010, 10, 1946-1953.	2.2	11
94	A surface plasmon resonance-based biochip to reveal traces of ephedrine. Analytical Methods, 2012, 4, 1940.	2.7	11
95	Tryptophan-scanning mutagenesis of the ligand binding pocket in Thermotoga maritima arginine-binding protein. Biochimie, 2014, 99, 208-214.	2.6	11
96	A hypothesis on the capacity of plant odorant-binding proteins to bind volatile isoprenoids based on in silico evidences. ELife, 2021, 10, .	6.0	11
97	Pressure Affects the Structure and the Dynamics of thed-Galactose/d-Glucose-Binding Protein fromEscherichia coliby Perturbing the C-Terminal Domain of the Proteinâ€. Biochemistry, 2006, 45, 11885-11894.	2.5	10
98	Domain swapping dissection in Thermotoga maritima arginine binding protein: How structural flexibility may compensate destabilization. Biochimica Et Biophysica Acta - Proteins and Proteomics, 2018, 1866, 952-962.	2.3	10
99	Effect of the optimized selective enrichment medium on the expression of the p60 protein used as Listeria monocytogenes antigen in specific sandwich ELISA. Research in Microbiology, 2019, 170, 182-191.	2.1	10
100	A Recombinant Glutamine-Binding Protein from Escherichia coli: Effect of Ligand-Binding on Protein Conformational Dynamics. Biotechnology Progress, 2004, 20, 1847-1854.	2.6	9
101	Temperature modulates binding specificity and affinity of the d-trehalose/d-maltose-binding protein from the hyperthermophilic archaeon Thermococcus litoralis. Biochimica Et Biophysica Acta - Proteins and Proteomics, 2007, 1774, 540-544.	2.3	9
102	Molecular adaptation strategies to high temperature and thermal denaturation mechanism of the D-trehalose/D-maltose-binding protein from the hyperthermophilic archaeon Thermococcus litoralis. Proteins: Structure, Function and Bioinformatics, 2007, 67, 1002-1009.	2.6	9
103	Mink Growth Hormone Structural–Functional Relationships: Effects of Renaturing and Storage Conditions. Protein Journal, 2008, 27, 170-180.	1.6	9
104	Alcohol dehydrogenase from the hyperthermophilic archaeon Pyrobaculum aerophilum: Stability at high temperature. Archives of Biochemistry and Biophysics, 2012, 525, 40-46.	3.0	9
105	Determination of benzyl methyl ketone – a commonly used precursor in amphetamine manufacture. Analytical Methods, 2012, 4, 3558.	2.7	9
106	Studies of conformational changes of an arginine-binding protein from Thermotoga maritima in the presence and absence of ligand via molecular dynamics simulations with the coarse-grained UNRES force field. Journal of Molecular Modeling, 2015, 21, 64.	1.8	9
107	Modern fluorescence-based concepts and methods to study biomolecular interactions. Molecular Systems Design and Engineering, 2017, 2, 123-132.	3.4	9
108	Design and Development of Photonic Biosensors for Swine Viral Diseases Detection. Sensors, 2019, 19, 3985.	3.8	9

#	Article	IF	CITATIONS
109	The Quaternary Structure of the Recombinant Bovine Odorant-Binding Protein Is Modulated by Chemical Denaturants. PLoS ONE, 2014, 9, e85169.	2.5	9
110	Molecular strategies for protein stabilization: The case of a trehalose/maltoseâ€binding protein from <i>Thermus thermophilus</i> . Proteins: Structure, Function and Bioinformatics, 2008, 73, 839-850.	2.6	8
111	Under Pressure That Splits a Family in Two. The Case of Lipocalin Family. PLoS ONE, 2012, 7, e50489.	2.5	8
112	New immobilization method of anti-PepD monoclonal antibodies for the detection of Listeria monocytogenes p60 protein – Part B: Rapid and specific sandwich ELISA using antibodies immobilized on a chitosan/CNC film support. Reactive and Functional Polymers, 2019, 143, 104317.	4.1	8
113	Effect of acidic phospholipids on the structural properties of recombinant cytosolic human glyoxalase II. Proteins: Structure, Function and Bioinformatics, 2002, 48, 126-133.	2.6	7
114	Pressure effect on the stability and the conformational dynamics of the D-Galactose/D-Glucose-binding protein from Escherichia coli. Proteins: Structure, Function and Bioinformatics, 2005, 62, 193-201.	2.6	7
115	Timeâ€resolved fluorescence spectroscopy and molecular dynamics simulations point out the effects of pressure on the stability and dynamics of the porcine odorantâ€binding protein. Biopolymers, 2008, 89, 284-291.	2.4	7
116	On the possibility of ephedrine detection: time-resolved fluorescence resonance energy transfer (FRET)-based approach. Analytical and Bioanalytical Chemistry, 2016, 408, 6329-6336.	3.7	7
117	WaterSpy: A High Sensitivity, Portable Photonic Device for Pervasive Water Quality Analysis. Sensors, 2019, 19, 33.	3.8	7
118	A fluorescence immunoassay for a rapid detection of Listeria monocytogenes on working surfaces. Scientific Reports, 2020, 10, 21729.	3.3	7
119	Photonic Label-Free Biosensors for Fast and Multiplex Detection of Swine Viral Diseases. Sensors, 2022, 22, 708.	3.8	7
120	Mechanism of thermal denaturation of maltodextrin phosphorylase from Escherichia coli. Biochemical Journal, 2000, 346, 255-263.	3.7	6
121	Tryptophan Residue of the D-Galactose/D-Glucose-Binding Protein from E. Coli Localized in its Active Center Does not Contribute to the Change in Intrinsic Fluorescence Upon Glucose Binding. Journal of Fluorescence, 2015, 25, 87-94.	2.5	6
122	Self-oriented monolayer immobilization of ovalbumin and B. cereus antibody molecules on a chemically modified surface of silicon nitride fosters the enhancement of capture of bio-agents. Colloids and Surfaces B: Biointerfaces, 2016, 148, 585-591.	5.0	6
123	Cloning and bacterial expression systems for recombinant human heparanase production: Substrate specificity investigation by docking of a putative heparanase substrate. Biotechnology and Applied Biochemistry, 2018, 65, 89-98.	3.1	6
124	New immobilization method of anti-PepD monoclonal antibodies for the detection of Listeria monocytogenes p60 protein – Part A: Optimization of a crosslinked film support based on chitosan and cellulose nanocrystals (CNC). Reactive and Functional Polymers, 2020, 146, 104313.	4.1	6
125	Engineering resonance energy transfer for advanced immunoassays: The case of celiac disease. Analytical Biochemistry, 2012, 425, 13-17.	2.4	5
126	Structure and stability of D-galactose/D-glucose-binding protein. The role of D-glucose binding and Ca ion depletion. Spectroscopy, 2010, 24, 355-359.	0.8	4

#	Article	IF	CITATIONS
127	The Porcine Odorant-Binding Protein as a Probe for an Impedenziometric-Based Detection of Benzene in the Environment. International Journal of Molecular Sciences, 2022, 23, 4039.	4.1	4
128	Oxyanion-Mediated Protein Stabilization: Differential Roles of Phosphate for Preventing Inactivation of Bacterial α-Glucan Phosphorylases. Biocatalysis and Biotransformation, 2001, 19, 379-398.	2.0	3
129	Odor binding protein as probe for a refractive index-based biosensor: new perspectives in biohazard assessment. , 2004, 5321, 258.		3
130	Structural features of the glutamate-binding protein from Corynebacterium glutamicum. International Journal of Biological Macromolecules, 2020, 162, 903-912.	7.5	3
131	Correlation Spectroscopy and Molecular Dynamics Simulations to Study the Structural Features of Proteins. PLoS ONE, 2013, 8, e64840.	2.5	2
132	Osmolyte-Like Stabilizing Effects of Low GdnHCl Concentrations on d-Glucose/d-Galactose-Binding Protein. International Journal of Molecular Sciences, 2017, 18, 2008.	4.1	2
133	A thermoelectrically stabilized aluminium acoustic trap combined with attenuated total reflection infrared spectroscopy for detection of <i>Escherichia coli</i> in water. Lab on A Chip, 2021, 21, 1811-1819.	6.0	2
134	Pressure Effects on the Structure and Stability of the Hyperthermophilic Trehalose/Maltose-Binding Protein from Thermococcus litoralis. Journal of Physical Chemistry B, 2009, 113, 12804-12808.	2.6	1
135	Plasmonic Chemical and Biological Sensors based on plastic optical fibers. , 2018, , .		1
136	New Emergent Nanotechnologies in Medical and Biochemical Applications:Advanced Fluorescence Protein-Based Nanosensors. Current Chemical Biology, 2007, 1, 3-9.	0.5	0