
Denis L Nika

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3871456/publications.pdf Version: 2024-02-01

DENIS L NIKA

#	Article	IF	CITATIONS
1	Extremely high thermal conductivity of graphene: Prospects for thermal management applications in nanoelectronic circuits. Applied Physics Letters, 2008, 92, .	1.5	1,745
2	Dimensional crossover of thermal transport in few-layer graphene. Nature Materials, 2010, 9, 555-558.	13.3	1,198
3	Phonon thermal conduction in graphene: Role of Umklapp and edge roughness scattering. Physical Review B, 2009, 79, .	1.1	836
4	Strongly Anisotropic Thermal Conductivity of Free‣tanding Reduced Graphene Oxide Films Annealed at High Temperature. Advanced Functional Materials, 2015, 25, 4664-4672.	7.8	462
5	Lattice thermal conductivity of graphene flakes: Comparison with bulk graphite. Applied Physics Letters, 2009, 94, 203103.	1.5	461
6	Two-dimensional phonon transport in graphene. Journal of Physics Condensed Matter, 2012, 24, 233203.	0.7	333
7	Thermal Conductivity of Graphene Laminate. Nano Letters, 2014, 14, 5155-5161.	4.5	268
8	Phononics in low-dimensional materials. Materials Today, 2012, 15, 266-275.	8.3	262
9	Graphene Thermal Properties: Applications in Thermal Management and Energy Storage. Applied Sciences (Switzerland), 2014, 4, 525-547.	1.3	258
10	Phonons and thermal transport in graphene and graphene-based materials. Reports on Progress in Physics, 2017, 80, 036502.	8.1	249
11	Anomalous Size Dependence of the Thermal Conductivity of Graphene Ribbons. Nano Letters, 2012, 12, 3238-3244.	4.5	247
12	Heat conduction in graphene: experimental study and theoretical interpretation. New Journal of Physics, 2009, 11, 095012.	1.2	213
13	Thermal conductivity of graphene with defects induced by electron beam irradiation. Nanoscale, 2016, 8, 14608-14616.	2.8	187
14	Phonons in twisted bilayer graphene. Physical Review B, 2013, 88, .	1.1	167
15	Thermal conductivity of twisted bilayer graphene. Nanoscale, 2014, 6, 13402-13408.	2.8	136
16	Phonon Engineering in Hetero- and Nanostructures. Journal of Nanoelectronics and Optoelectronics, 2007, 2, 140-170.	0.1	98
17	Acoustic-phonon propagation in rectangular semiconductor nanowires with elastically dissimilar barriers. Physical Review B, 2005, 72, .	1.1	97
18	Thermal properties of graphene and fewâ€layer graphene: applications in electronics. IET Circuits, Devices and Systems, 2015, 9, 4-12.	0.9	82

Denis L Nika

#	Article	IF	CITATIONS
19	Breakdown current density in h-BN-capped quasi-1D TaSe ₃ metallic nanowires: prospects of interconnect applications. Nanoscale, 2016, 8, 15774-15782.	2.8	79
20	Phonon spectrum and group velocities in AlN/GaN/AlN and related heterostructures. Superlattices and Microstructures, 2003, 33, 155-171.	1.4	74
21	Theoretical description of thermal transport in graphene: The issues of phonon cutâ€off frequencies and polarization branches. Physica Status Solidi (B): Basic Research, 2011, 248, 2609-2614.	0.7	72
22	Suppression of phonon heat conduction in cross-section-modulated nanowires. Physical Review B, 2012, 85, .	1.1	72
23	Direct observation of confined acoustic phonon polarization branches in free-standing semiconductor nanowires. Nature Communications, 2016, 7, 13400.	5.8	71
24	Specific heat of twisted bilayer graphene: Engineering phonons by atomic plane rotations. Applied Physics Letters, 2014, 105, .	1.5	70
25	Acoustic phonon engineering in coated cylindrical nanowires. Superlattices and Microstructures, 2005, 38, 168-183.	1.4	69
26	Reduction of lattice thermal conductivity in one-dimensional quantum-dot superlattices due to phonon filtering. Physical Review B, 2011, 84, .	1.1	64
27	Thermal Conduction in Suspended Graphene Layers. Fullerenes Nanotubes and Carbon Nanostructures, 2010, 18, 474-486.	1.0	60
28	Thermal conductivity inhibition in phonon engineered core-shell cross-section modulated Si/Ge nanowires. Applied Physics Letters, 2013, 102, .	1.5	54
29	Engineering of the thermodynamic properties of bilayer graphene by atomic plane rotations: the role of the out-of-plane phonons. Nanoscale, 2015, 7, 12851-12859.	2.8	53
30	Confined electron-confined phonon scattering rates in wurtzite AlN/GaN/AlN heterostructures. Journal of Applied Physics, 2004, 95, 5626-5632.	1.1	45
31	A phonon depletion effect in ultrathin heterostructures with acoustically mismatched layers. Applied Physics Letters, 2004, 85, 825-827.	1.5	44
32	Built-in field effect on the electron mobility in AlNâ^•GaNâ^•AlN quantum wells. Applied Physics Letters, 2006, 89, 113508.	1.5	44
33	Ultra-low thermal conductivity of nanogranular indium tin oxide films deposited by spray pyrolysis. Applied Physics Letters, 2017, 110, .	1.5	32
34	Charge-carrier states and light absorption in ordered quantum dot superlattices. Physical Review B, 2007, 76, .	1.1	30
35	Phonon-engineered mobility enhancement in the acoustically mismatched silicon/diamond transistor channels. Applied Physics Letters, 2008, 93, 173111.	1.5	27
36	Electron mobility enhancement in AlNâ^•GaNâ^•AlN heterostructures with InGaN nanogrooves. Applied Physics Letters, 2006, 89, 112110.	1.5	26

Denis L Nika

#	Article	IF	CITATIONS
37	Size-quantized oscillations of the electron mobility limited by the optical and confined acoustic phonons in the nanoscale heterostructures. Journal of Applied Physics, 2007, 102, 054304.	1.1	26
38	Reduced thermal resistance of the silicon-synthetic diamond composite substrates at elevated temperatures. Applied Physics Letters, 2010, 97, .	1.5	21
39	In-Plane Thermal Conductivity of Radial and Planar Si/SiO _{<i>x</i>} Hybrid Nanomembrane Superlattices. ACS Nano, 2017, 11, 8215-8222.	7.3	18
40	Engineering of Thermal Fluxes in Phonon Mismatched Heterostructures. Journal of Nanoelectronics and Optoelectronics, 2009, 4, 180-185.	0.1	17
41	Excitons in wurtziteAlGaNâ^•GaNquantum-well heterostructures. Physical Review B, 2008, 77, .	1.1	16
42	Phonon-engineered thermal transport in Si wires with constant and periodically modulated cross-sections: A crossover between nano- and microscale regimes. Applied Physics Letters, 2015, 107, .	1.5	15
43	Thermal transport in semiconductor nanostructures, graphene, and related two-dimensional materials. Chinese Physics B, 2018, 27, 056301.	0.7	15
44	Extraordinary Thermal Conductivity of Graphene: Possible Applications in Thermal Management. ECS Transactions, 2010, 28, 63-71.	0.3	13
45	Acoustic phonon engineering of thermal properties of silicon-based nanostructures. Journal of Physics: Conference Series, 2007, 92, 012086.	0.3	11
46	Thermal Transport in Graphene, Few-Layer Graphene and Graphene Nanoribbons. Lecture Notes in Physics, 2016, , 339-363.	0.3	11
47	Thermoelectric properties of nano-granular indium–tin-oxide within modified electron filtering model with chemisorption-type potential barriers. Physica E: Low-Dimensional Systems and Nanostructures, 2016, 81, 49-58.	1.3	9
48	Phonons and Phonon Thermal Conductivity in Silicon Nanolayers. Journal of Nanoelectronics and Optoelectronics, 2012, 7, 370-375.	0.1	7
49	Thermal Conductivity Reduction in Si/Ge Core/Shell Nanowires. Journal of Nanoelectronics and Optoelectronics, 2012, 7, 701-705.	0.1	7
50	Phonon spectrum and group velocities in wurtzite hetero-structures. Physica Status Solidi C: Current Topics in Solid State Physics, 2004, 1, 2658-2661.	0.8	6
51	Lattice Thermal Conductivity of Ultra-Thin Freestanding Layers: Face-Centered Cubic Cell Model versus Continuum Approach. Journal of Nanoelectronics and Optoelectronics, 2009, 4, 170-173.	0.1	6
52	Phonons and Thermal Transport in Si/SiO2 Multishell Nanotubes: Atomistic Study. Applied Sciences (Switzerland), 2021, 11, 3419.	1.3	5
53	Resonant Terahertz Light Absorption by Virtue of Tunable Hybrid Interface Phonon–Plasmon Modes in Semiconductor Nanoshells. Applied Sciences (Switzerland), 2019, 9, 1442.	1.3	4
54	Energetic, structural and electronic features of Sn-, Ga-, O-based defect complexes in cubic In ₂ O ₃ . Journal of Physics Condensed Matter, 2020, 32, 225703.	0.7	3

DENIS L NIKA

#	Article	IF	CITATIONS
55	Thermal Transport Evolution Due to Nanostructural Transformations in Ga-Doped Indium-Tin-Oxide Thin Films. Nanomaterials, 2021, 11, 1126.	1.9	3
56	Electric Current and Heat Propagation in Graphene Ribbons. Journal of Nanoelectronics and Optoelectronics, 2010, 4, 291-295.	0.1	3
57	The size-quantized oscillations of the optical-phonon-limited electron mobility in AlN/GaN/AlN nanoscale heterostructures. Journal of Physics: Conference Series, 2007, 92, 012022.	0.3	2
58	Nonadiabatic theory of excitons in wurtzite AlGaN/GaN quantumâ€well heterostructures. Physica Status Solidi C: Current Topics in Solid State Physics, 2009, 6, 46-49.	0.8	1
59	Extraordinary Thermal Conductivity of Graphene: Prospects of Thermal Management Applications. , 2010, , .		1
60	Two-Dimensional Thermal Transport in Graphene. , 2017, , 57-84.		1
61	Electron-polar optical phonon scattering suppression and mobility enhancement in wurtzite heterostructures. Journal of Physics: Conference Series, 2007, 92, 012050.	0.3	0
62	Phonon engineered silicon - diamond nanoscale heterostructures with enhanced carrier mobility. , 2008, , .		0
63	Strong reduction of the lattice thermal conductivity in superlattices and quantum dot superlattices. , 2012, , .		0
64	Thermal Conductivity of Segmented Nanowires. Nanoscience and Technology, 2016, , 507-531.	1.5	0
65	Nanodimensional Chalcogenide Film-Metal Structure: Numerical Modeling of the Gas Sensitive Properties. Journal of Nanoelectronics and Optoelectronics, 2009, 4, 165-169.	0.1	0
66	<i>A Special Issue on</i> Physical Properties and Applications of Nanostructures. Journal of Nanoelectronics and Optoelectronics, 2011, 6, 379-380.	0.1	0