Wenbin Hu

List of Publications by Year in Descending Order

Source: https://exaly.com/author-pdf/3871359/wenbin-hu-publications-by-year.pdf

Version: 2024-04-19

This document has been generated based on the publications and citations recorded by exaly.com. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

159 9,198 45 94 g-index

181 12,158 12 6.78 ext. papers ext. citations avg, IF L-index

#	Paper	IF	Citations
159	Wavelength-Dependent Polarization Beam Splitter Based on Birefringent Tapered Multicore Fiber. Journal of Lightwave Technology, 2022 , 40, 2128-2135	4	Ο
158	Highly Active and Durable Single-Atom Tungsten-Doped NiS Se Nanosheet@NiS Se Nanorod Heterostructures for Water Splitting <i>Advanced Materials</i> , 2022 , e2107053	24	18
157	Extreme Environmental Thermal Shock Induced Dislocation-Rich Pt Nanoparticles Boosting Hydrogen Evolution Reaction (Adv. Mater. 2/2022). <i>Advanced Materials</i> , 2022 , 34, 2270018	24	
156	Bimetallic Multi-Level Layered Co-NiOOH/Ni S @NF Nanosheet for Hydrogen Evolution Reaction in Alkaline Medium <i>Small</i> , 2022 , e2106904	11	5
155	Boosting energy efficiency and stability of Li-CO battery via synergy between Ru atom cluster and single atom Ru-N site in electrocatalyst cathode <i>Advanced Materials</i> , 2022 , e2200559	24	10
154	Development and Challenges of Biphasic Membrane-Less Redox Batteries Advanced Science, 2022, e2	1 05 .466	8
153	Designing Nanoporous Coral-Like Pt Nanowires Architecture for Methanol and Ammonia Oxidation Reactions. <i>Advanced Functional Materials</i> , 2022 , 32, 2110702	15.6	3
152	van der Waals forces enhanced lightgraphene interaction in optical microfiber polarizer. <i>AIP Advances</i> , 2022 , 12, 045027	1.5	0
151	Extreme Environmental Thermal Shock Induced Dislocation-Rich Pt Nanoparticles Boosting Hydrogen Evolution Reaction. <i>Advanced Materials</i> , 2021 , 34, e2106973	24	11
150	Defective Bimetallic Selenides for Selective CO Electroreduction to CO. Advanced Materials, 2021, e210	0634	6
149	Tapered multicore fiber interferometer for ultra-sensitive temperature sensing with thermo-optical materials. <i>Optics Express</i> , 2021 , 29, 35765-35775	3.3	3
148	Regulating the Catalytically Active Sites in Low-Cost and Earth-Abundant 3d Transition-Metal-Based Electrode Materials for High-Performance ZincAir Batteries. <i>Energy & Euels</i> , 2021 , 35, 6483-6503	4.1	9
147	Metallic-State MoS Nanosheets with Atomic Modification for Sodium Ion Batteries with a High Rate Capability and Long Lifespan. <i>ACS Applied Materials & Samp; Interfaces</i> , 2021 , 13, 19894-19903	9.5	10
146	Palladium Particles Modified by Mixed-Frequency Square-Wave Potential Treatment to Enhance Electrocatalytic Performance for Formic Acid Oxidation. <i>Catalysts</i> , 2021 , 11, 522	4	0
145	Fabrication of the Ni-NiCl Composite Cathode Material for Fast-Response Thermal Batteries. <i>Frontiers in Chemistry</i> , 2021 , 9, 679231	5	4
144	Mapping the Design of Electrolyte Materials for Electrically Rechargeable Zinc-Air Batteries. <i>Advanced Materials</i> , 2021 , 33, e2006461	24	18
143	Life-Cycle Economic Evaluation of Batteries for Electeochemical Energy Storage Systems. <i>Journal of Electrical Engineering and Technology</i> , 2021 , 16, 2497	1.4	O

(2020-2021)

142	Confronting the Challenges in Lithium Anodes for Lithium Metal Batteries. <i>Advanced Science</i> , 2021 , 8, e2101111	13.6	22
141	NiS/Ni3S2@NiWO4 nanoarrays towards all-solid-state hybrid supercapacitor with record-high energy density. <i>Science China Materials</i> , 2021 , 64, 852-860	7.1	12
140	Behavior of gold-enhanced electrocatalytic performance of NiPtAu hollow nanocrystals for alkaline methanol oxidation. <i>Science China Materials</i> , 2021 , 64, 611-620	7.1	7
139	Recent progresses of micro-nanostructured transition metal compound-based electrocatalysts for energy conversion technologies. <i>Science China Materials</i> , 2021 , 64, 1-26	7.1	17
138	Cobalt sulfides constructed heterogeneous interfaces decorated on N,S-codoped carbon nanosheets as a highly efficient bifunctional oxygen electrocatalyst. <i>Journal of Materials Chemistry A</i> , 2021 , 9, 13926-13935	13	10
137	Identifying Heteroatomic and Defective Sites in Carbon with Dual-Ion Adsorption Capability for High Energy and Power Zinc Ion Capacitor. <i>Nano-Micro Letters</i> , 2021 , 13, 59	19.5	20
136	Inversely Tuning the CO Electroreduction and Hydrogen Evolution Activity on Metal Oxide via Heteroatom Doping. <i>Angewandte Chemie - International Edition</i> , 2021 , 60, 7602-7606	16.4	29
135	Interfacial engineering of BiS/TiCT MXene based on work function for rapid photo-excited bacteria-killing. <i>Nature Communications</i> , 2021 , 12, 1224	17.4	82
134	Encapsulating Cobalt Nanoparticles in Interconnected N-Doped Hollow Carbon Nanofibers with Enriched Co?N?C Moiety for Enhanced Oxygen Electrocatalysis in Zn-Air Batteries. <i>Advanced Science</i> , 2021 , 8, e2101438	13.6	21
133	Zinc-Air Batteries: Mapping the Design of Electrolyte Materials for Electrically Rechargeable ZincAir Batteries (Adv. Mater. 31/2021). <i>Advanced Materials</i> , 2021 , 33, 2170243	24	
132	Study on Wettability and Corrosion Behavior of Al2O3 Doped Polyurea Coatings. <i>Protection of Metals and Physical Chemistry of Surfaces</i> , 2020 , 56, 965-972	0.9	
131	Preparation of NiFe@NC/CC Integrated Electrode and Its Application in Zinc-Air Battery. <i>Frontiers in Chemistry</i> , 2020 , 8, 575288	5	3
130	ZincAir Batteries: A Rechargeable ZnAir Battery with High Energy Efficiency and Long Life Enabled by a Highly Water-Retentive Gel Electrolyte with Reaction Modifier (Adv. Mater. 22/2020). <i>Advanced Materials</i> , 2020 , 32, 2070172	24	2
129	Identifying Dense NiSe /CoSe Heterointerfaces Coupled with Surface High-Valence Bimetallic Sites for Synergistically Enhanced Oxygen Electrocatalysis. <i>Advanced Materials</i> , 2020 , 32, e2000607	24	143
128	A Solution-based Method for Synthesizing Pyrite-type Ferrous Metal Sulfide Microspheres with Efficient OER Activity. <i>Chemistry - an Asian Journal</i> , 2020 , 15, 2231-2238	4.5	2
127	Refractive index interferometer based on SMF-MMF-TMCF-SMF structure with low temperature sensitivity. <i>Optical Fiber Technology</i> , 2020 , 57, 102233	2.4	2
126	Acceptor-Doping Accelerated Charge Separation in Cu O Photocathode for Photoelectrochemical Water Splitting: Theoretical and Experimental Studies. <i>Angewandte Chemie - International Edition</i> , 2020 , 59, 18463-18467	16.4	31
125	Frontispiz: Tunable Periodically Ordered Mesoporosity in Palladium Membranes Enables Exceptional Enhancement of Intrinsic Electrocatalytic Activity for Formic Acid Oxidation. Angewandte Chemie, 2020, 132,	3.6	1

124	2D and 3D Shape Sensing Based on 7-Core Fiber Bragg Gratings. <i>Photonic Sensors</i> , 2020 , 10, 306-315	2.3	3
123	Decoupling electrolytes towards stable and high-energy rechargeable aqueous zincthanganese dioxide batteries. <i>Nature Energy</i> , 2020 , 5, 440-449	62.3	203
122	Advanced Characterization Techniques for Identifying the Key Active Sites of Gas-Involved Electrocatalysts. <i>Advanced Functional Materials</i> , 2020 , 30, 2001704	15.6	11
121	Carbon-based cathode materials for rechargeable zinc-air batteries: From current collectors to bifunctional integrated air electrodes 2020 , 2, 370-386		35
120	Spontaneous Synthesis of Silver-Nanoparticle-Decorated Transition-Metal Hydroxides for Enhanced Oxygen Evolution Reaction. <i>Angewandte Chemie - International Edition</i> , 2020 , 59, 7245-7250	16.4	103
119	Spontaneous Synthesis of Silver-Nanoparticle-Decorated Transition-Metal Hydroxides for Enhanced Oxygen Evolution Reaction. <i>Angewandte Chemie</i> , 2020 , 132, 7312-7317	3.6	10
118	Developing Indium-based Ternary Spinel Selenides for Efficient Solid Flexible Zn-Air Batteries and Water Splitting. <i>ACS Applied Materials & Amp; Interfaces</i> , 2020 , 12, 8115-8123	9.5	23
117	Review of Emerging Potassium-Sulfur Batteries. <i>Advanced Materials</i> , 2020 , 32, e1908007	24	51
116	A Design of Taper-Like Etched Multicore Fiber Refractive Index-Insensitive a Temperature Highly Sensitive Mach-Zehnder Interferometer. <i>IEEE Sensors Journal</i> , 2020 , 20, 7074-7081	4	13
115	Tapered multicore fiber interferometer for refractive index sensing with graphene enhancement. <i>Applied Optics</i> , 2020 , 59, 3927-3932	1.7	10
114	Facile synthesis of nickel cobalt selenide hollow nanospheres as efficient bifunctional electrocatalyst for rechargeable Zn-air battery. <i>Science China Materials</i> , 2020 , 63, 347-355	7.1	21
113	Battery Technologies for Grid-Level Large-Scale Electrical Energy Storage. <i>Transactions of Tianjin University</i> , 2020 , 26, 92-103	2.9	65
112	Tunable Periodically Ordered Mesoporosity in Palladium Membranes Enables Exceptional Enhancement of Intrinsic Electrocatalytic Activity for Formic Acid Oxidation. <i>Angewandte Chemie - International Edition</i> , 2020 , 59, 5092-5101	16.4	26
111	Effect of Interlayers on Microstructure and Properties of 2205/Q235B Duplex Stainless Steel Clad Plate. <i>Acta Metallurgica Sinica (English Letters)</i> , 2020 , 33, 679-692	2.5	2
110	Tunable Periodically Ordered Mesoporosity in Palladium Membranes Enables Exceptional Enhancement of Intrinsic Electrocatalytic Activity for Formic Acid Oxidation. <i>Angewandte Chemie</i> , 2020 , 132, 5130-5139	3.6	6
109	Air-Assisted Transient Synthesis of Metastable Nickel Oxide Boosting Alkaline Fuel Oxidation Reaction. <i>Advanced Energy Materials</i> , 2020 , 10, 2001397	21.8	23
108	Numerical solution of strongly guided modes propagating in sapphire crystal fibers (FAl2O3) for UV, VIS/IR wave-guiding. <i>Results in Physics</i> , 2020 , 18, 103311	3.7	1
107	High-Temperature Shock Enabled Nanomanufacturing for Energy-Related Applications. <i>Advanced Energy Materials</i> , 2020 , 10, 2001331	21.8	41

106	Methods for producing an easily assembled zinc-air battery. <i>MethodsX</i> , 2020 , 7, 100973	1.9	1
105	Flexible and Wearable Power Sources for Next-Generation Wearable Electronics. <i>Batteries and Supercaps</i> , 2020 , 3, 1262-1274	5.6	14
104	Kirigami-Inspired Flexible and Stretchable Zinc-Air Battery Based on Metal-Coated Sponge Electrodes. <i>ACS Applied Materials & Electrodes. ACS ACS Applied Materials & Electrodes. ACS ACS ACS ACS ACS ACS ACS ACS ACS ACS</i>	9.5	14
103	Flexible and Wearable Power Sources for Next-Generation Wearable Electronics. <i>Batteries and Supercaps</i> , 2020 , 3, 1261-1261	5.6	1
102	Facile High Throughput Wet-Chemical Synthesis Approach Using a Microfluidic-Based Composition and Temperature Controlling Platform. <i>Frontiers in Chemistry</i> , 2020 , 8, 579828	5	5
101	Effect of Process Parameters on Electrodeposited Nanocrystalline Chromium Coatings Investigated by an Orthogonal Experiment. <i>Protection of Metals and Physical Chemistry of Surfaces</i> , 2020 , 56, 857-866	5 ^{0.9}	2
100	3D Foam Anode and Hydrogel Electrolyte for High-Performance and Stable Flexible ZincAir Battery. <i>ChemistrySelect</i> , 2020 , 5, 8305-8310	1.8	8
99	Nanomanufacturing of RGO-CNT Hybrid Film for Flexible Aqueous Al-Ion Batteries. <i>Small</i> , 2020 , 16, e20	02856	17
98	Thermal Shock-Activated Spontaneous Growing of Nanosheets for Overall Water Splitting. <i>Nano-Micro Letters</i> , 2020 , 12, 162	19.5	31
97	Dislocation-Strained IrNi Alloy Nanoparticles Driven by Thermal Shock for the Hydrogen Evolution Reaction. <i>Advanced Materials</i> , 2020 , 32, e2006034	24	56
96	Lattice-Strain Engineering of Homogeneous NiS Se Core-Shell Nanostructure as a Highly Efficient and Robust Electrocatalyst for Overall Water Splitting. <i>Advanced Materials</i> , 2020 , 32, e2000231	24	79
95	Sequential Electrodeposition of Bifunctional Catalytically Active Structures in MoO /Ni-NiO Composite Electrocatalysts for Selective Hydrogen and Oxygen Evolution. <i>Advanced Materials</i> , 2020 , 32, e2003414	24	95
94	Hierarchical iridium-based multimetallic alloy with double-core-shell architecture for efficient overall water splitting. <i>Science China Materials</i> , 2020 , 63, 249-257	7.1	39
93	A Rechargeable Zn-Air Battery with High Energy Efficiency and Long Life Enabled by a Highly Water-Retentive Gel Electrolyte with Reaction Modifier. <i>Advanced Materials</i> , 2020 , 32, e1908127	24	79
92	Challenges in Zinc Electrodes for Alkaline ZincAir Batteries: Obstacles to Commercialization. <i>ACS Energy Letters</i> , 2019 , 4, 2259-2270	20.1	147
91	Porous Zinc Anode Design for Zn-air Chemistry. Frontiers in Chemistry, 2019, 7, 656	5	13
90	Enhanced antibacterial properties of biocompatible titanium electrochemically deposited Ag/TiO nanotubes and chitosan-gelatin-Ag-ZnO complex coating <i>RSC Advances</i> , 2019 , 9, 4521-4529	3.7	12
89	Highly Active and CO-Tolerant Trimetallic NiPtPd Hollow Nanocrystals as Electrocatalysts for Methanol Electro-oxidation Reaction. <i>ACS Applied Energy Materials</i> , 2019 , 2, 4763-4773	6.1	18

88	Advances in the development of power supplies for the Internet of Everything. <i>Informa</i> D Materily, 2019 , 1, 130-139	23.1	67
87	Nanosheets assembled into nickel sulfide nanospheres with enriched Ni3+ active sites for efficient water-splitting and zincBir batteries. <i>Journal of Materials Chemistry A</i> , 2019 , 7, 23787-23793	13	46
86	Sulfur-Grafted Hollow Carbon Spheres for Potassium-Ion Battery Anodes. <i>Advanced Materials</i> , 2019 , 31, e1900429	24	172
85	Mesoporous Decoration of Freestanding Palladium Nanotube Arrays Boosts the Electrocatalysis Capabilities toward Formic Acid and Formate Oxidation. <i>Advanced Energy Materials</i> , 2019 , 9, 1900955	21.8	52
84	Influence of Acid Treatment on the Loading and Release Behavior of Halloysite with 2-Mercaptobenzothiazole. <i>Journal of Nanoscience and Nanotechnology</i> , 2019 , 19, 7178-7184	1.3	3
83	Recent Progress in Advanced Characterization Methods for Silicon-Based Lithium-Ion Batteries. Small Methods, 2019 , 3, 1900158	12.8	20
82	Combining the Advantages of Hollow and One-Dimensional Structures: Balanced Activity and Stability toward Methanol Oxidation Based on the Interface of PtCo Nanochains. <i>ACS Applied Energy Materials</i> , 2019 , 2, 1588-1593	6.1	11
81	Identifying the Activation of Bimetallic Sites in NiCo S @g-C N -CNT Hybrid Electrocatalysts for Synergistic Oxygen Reduction and Evolution. <i>Advanced Materials</i> , 2019 , 31, e1808281	24	221
80	Pt embedded Ni3Se2@NiOOH core-shell dendrite-like nanoarrays on nickel as bifunctional electrocatalysts for overall water splitting. <i>Science China Materials</i> , 2019 , 62, 1096-1104	7.1	28
79	Bimetallic Metal-Organic-Framework/Reduced Graphene Oxide Composites as Bifunctional Electrocatalysts for Rechargeable Zn-Air Batteries. <i>ACS Applied Materials & Discrete Materi</i>	9.5	71
78	Generation of Nanoparticle, Atomic-Cluster, and Single-Atom Cobalt Catalysts from Zeolitic Imidazole Frameworks by Spatial Isolation and Their Use in ZincAir Batteries. <i>Angewandte Chemie</i> , 2019 , 131, 5413-5418	3.6	82
77	Electrocatalysis: Mesoporous Decoration of Freestanding Palladium Nanotube Arrays Boosts the Electrocatalysis Capabilities toward Formic Acid and Formate Oxidation (Adv. Energy Mater. 25/2019). Advanced Energy Materials, 2019 , 9, 1970100	21.8	1
76	Sodium-Ion Batteries: 1T?-ReS2 Confined in 2D-Honeycombed Carbon Nanosheets as New Anode Materials for High-Performance Sodium-Ion Batteries (Adv. Energy Mater. 30/2019). <i>Advanced Energy Materials</i> , 2019 , 9, 1970117	21.8	3
75	Recent advances and challenges in divalent and multivalent metal electrodes for metallir batteries. <i>Journal of Materials Chemistry A</i> , 2019 , 7, 18183-18208	13	87
74	Engineering Interface and Oxygen Vacancies of NiCoSe to Boost Oxygen Catalysis for Flexible Zn-Air Batteries. <i>ACS Applied Materials & Engineering</i> , 11, 27964-27972	9.5	17
73	Potassium-Ion Batteries: Sulfur-Grafted Hollow Carbon Spheres for Potassium-Ion Battery Anodes (Adv. Mater. 30/2019). <i>Advanced Materials</i> , 2019 , 31, 1970217	24	39
72	1T?-ReS2 Confined in 2D-Honeycombed Carbon Nanosheets as New Anode Materials for High-Performance Sodium-Ion Batteries. <i>Advanced Energy Materials</i> , 2019 , 9, 1901146	21.8	32
71	Toward Flexible and Wearable Zn-Air Batteries from Cotton Textile Waste. ACS Omega, 2019, 4, 19341-	1 <u>9</u> .349	10

70	Atomically Dispersed Binary Co-Ni Sites in Nitrogen-Doped Hollow Carbon Nanocubes for Reversible Oxygen Reduction and Evolution. <i>Advanced Materials</i> , 2019 , 31, e1905622	24	340
69	Utilizing solar energy to improve the oxygen evolution reaction kinetics in zinc-air battery. <i>Nature Communications</i> , 2019 , 10, 4767	17.4	101
68	Investigation of the Environmental Stability of Poly(vinyl alcohol)-KOH Polymer Electrolytes for Flexible Zinc-Air Batteries. <i>Frontiers in Chemistry</i> , 2019 , 7, 678	5	15
67	Confined Fe2VO4?Nitrogen-Doped Carbon Nanowires with Internal Void Space for High-Rate and Ultrastable Potassium-Ion Storage. <i>Advanced Energy Materials</i> , 2019 , 9, 1902674	21.8	57
66	Simultaneous measurement of refractive index and temperature based on reflective LPG-FBGs 2019 ,		1
65	Generation of Nanoparticle, Atomic-Cluster, and Single-Atom Cobalt Catalysts from Zeolitic Imidazole Frameworks by Spatial Isolation and Their Use in Zinc-Air Batteries. <i>Angewandte Chemie - International Edition</i> , 2019 , 58, 5359-5364	16.4	323
64	Long-battery-life flexible zinc battery with near-neutral polymer electrolyte and nanoporous integrated air electrode. <i>Journal of Materials Chemistry A</i> , 2019 , 7, 25449-25457	13	29
63	Co3O4 nanoparticles supported on N-doped electrospinning carbon nanofibers as an efficient and bifunctional oxygen electrocatalyst for rechargeable ZnBir batteries. <i>Inorganic Chemistry Frontiers</i> , 2019 , 6, 3554-3561	6.8	19
62	Pt Monolayers on Electrodeposited Nanoparticles of Different Compositions for Ammonia Electro-Oxidation. <i>Catalysts</i> , 2019 , 9, 4	4	5
61	Engineering the Surface Metal Active Sites of Nickel Cobalt Oxide Nanoplates toward Enhanced Oxygen Electrocatalysis for Zn-Air Battery. <i>ACS Applied Materials & District Action States</i> , 2019, 11, 4915-4921	9.5	56
60	A Simple One-Pot Strategy for Synthesizing Ultrafine SnS Nanoparticle/Graphene Composites as Anodes for Lithium/Sodium-Ion Batteries. <i>ChemSusChem</i> , 2018 , 11, 1549-1557	8.3	49
59	Corrosion behavior of X65 steel in seawater containing sulfate reducing bacteria under aerobic conditions. <i>Bioelectrochemistry</i> , 2018 , 122, 40-50	5.6	17
58	Controllable Synthesis of Ni Se (0.5 lk ll) Nanocrystals for Efficient Rechargeable Zinc-Air Batteries and Water Splitting. <i>ACS Applied Materials & Discourse (Control of the Control of </i>	9.5	80
57	Designed synthesis of NiCo-LDH and derived sulfide on heteroatom-doped edge-enriched 3D rivet graphene films for high-performance asymmetric supercapacitor and efficient OER. <i>Journal of Materials Chemistry A</i> , 2018 , 6, 8109-8119	13	79
56	Metal Air Batteries: Engineering Catalytic Active Sites on Cobalt Oxide Surface for Enhanced Oxygen Electrocatalysis (Adv. Energy Mater. 10/2018). <i>Advanced Energy Materials</i> , 2018 , 8, 1870043	21.8	6
55	One-step synthesis of the PdPt bimetallic nanodendrites with controllable composition for methanol oxidation reaction. <i>Science China Materials</i> , 2018 , 61, 697-706	7.1	28
54	ZincAir Batteries: Atomically Thin Mesoporous Co3O4 Layers Strongly Coupled with N-rGO Nanosheets as High-Performance Bifunctional Catalysts for 1D Knittable ZincAir Batteries (Adv. Mater. 4/2018). <i>Advanced Materials</i> , 2018 , 30, 1870027	24	2
53	Atomic Layer Co O Nanosheets: The Key to Knittable Zn-Air Batteries. <i>Small</i> , 2018 , 14, e1702987	11	51

52	Phase and composition controlled synthesis of cobalt sulfide hollow nanospheres for electrocatalytic water splitting. <i>Nanoscale</i> , 2018 , 10, 4816-4824	7.7	165
51	Engineering Catalytic Active Sites on Cobalt Oxide Surface for Enhanced Oxygen Electrocatalysis. <i>Advanced Energy Materials</i> , 2018 , 8, 1702222	21.8	182
50	Self-Assembly of Graphene-Encapsulated Cu Composites for Nonenzymatic Glucose Sensing. <i>ACS Omega</i> , 2018 , 3, 3420-3428	3.9	23
49	Mesoporous Graphitic Carbon-Encapsulated Fe O Nanocomposite as High-Rate Anode Material for Sodium-Ion Batteries. <i>Chemistry - A European Journal</i> , 2018 , 24, 14786-14793	4.8	21
48	One-Step Fabrication and Localized Electrochemical Characterization of Continuous Al-Alloyed Intermetallic Surface Layer on Magnesium Alloy. <i>Coatings</i> , 2018 , 8, 148	2.9	6
47	MetalAir Batteries: From Static to Flow System. Advanced Energy Materials, 2018, 8, 1801396	21.8	104
46	Electrochemical Oxidation of Chlorine-Doped Co(OH) Nanosheet Arrays on Carbon Cloth as a Bifunctional Oxygen Electrode. <i>ACS Applied Materials & Amp; Interfaces</i> , 2018 , 10, 796-805	9.5	56
45	In Situ Fabrication of Heterostructure on Nickel Foam with Tuned Composition for Enhancing Water-Splitting Performance. <i>Small</i> , 2018 , 14, e1803666	11	62
44	Zinc-Air Batteries: Atomic Layer Co3O4 Nanosheets: The Key to Knittable ZnAir Batteries (Small 43/2018). <i>Small</i> , 2018 , 14, 1870200	11	3
43	Online Monitoring of the Atmospheric Corrosion of Aluminium Alloys Using Electrochemical Noise Technique. <i>Russian Journal of Electrochemistry</i> , 2018 , 54, 623-628	1.2	3
42	Finite-Element Analysis on Percolation Performance of Foam Zinc. ACS Omega, 2018, 3, 11018-11025	3.9	1
41	Electrocatalysis: Ultrafine Pt Nanoparticle-Decorated Pyrite-Type CoS2 Nanosheet Arrays Coated on Carbon Cloth as a Bifunctional Electrode for Overall Water Splitting (Adv. Energy Mater. 24/2018). <i>Advanced Energy Materials</i> , 2018 , 8, 1870110	21.8	8
40	Ultrafine Pt Nanoparticle-Decorated Pyrite-Type CoS2 Nanosheet Arrays Coated on Carbon Cloth as a Bifunctional Electrode for Overall Water Splitting. <i>Advanced Energy Materials</i> , 2018 , 8, 1800935	21.8	217
39	Review of Hybrid Ion Capacitors: From Aqueous to Lithium to Sodium. <i>Chemical Reviews</i> , 2018 , 118, 645	576 8.4 9	8 504
38	Atomically Thin Mesoporous Co O Layers Strongly Coupled with N-rGO Nanosheets as High-Performance Bifunctional Catalysts for 1D Knittable Zinc-Air Batteries. <i>Advanced Materials</i> , 2018 , 30, 1703657	24	233
37	Large-scale and template-free synthesis of hierarchically porous MnCo2O4.5 as anode material for lithium-ion batteries with enhanced electrochemical performance. <i>Journal of Materials Science</i> , 2017 , 52, 5268-5282	4.3	18
36	Ultrathin CoO nanofilm as an efficient bifunctional catalyst for oxygen evolution and reduction reaction in rechargeable zinc-air batteries. <i>Nanoscale</i> , 2017 , 9, 8623-8630	7:7	77
35	Ultrathin Co3O4 Layers with Large Contact Area on Carbon Fibers as High-Performance Electrode for Flexible ZincAir Battery Integrated with Flexible Display. <i>Advanced Energy Materials</i> , 2017 , 7, 17007	7 3 1.8	218

(2015-2017)

34	Synthesis of Cubic-Shaped Pt Particles with (100) Preferential Orientation by a Quick, One-Step and Clean Electrochemical Method. <i>ACS Applied Materials & Distriction of Step 2017</i> , 9, 18856-18864	9.5	27
33	Clarifying the Controversial Catalytic Performance of Co(OH) and CoO for Oxygen Reduction/Evolution Reactions toward Efficient Zn-Air Batteries. <i>ACS Applied Materials & amp; Interfaces</i> , 2017 , 9, 22694-22703	9.5	97
32	Fabrication and properties of a superhydrophobic film on an electroless plated magnesium alloy. <i>RSC Advances</i> , 2017 , 7, 28909-28917	3.7	21
31	NiCo2S4 nanocrystals anchored on nitrogen-doped carbon nanotubes as a highly efficient bifunctional electrocatalyst for rechargeable zinc-air batteries. <i>Nano Energy</i> , 2017 , 31, 541-550	17.1	290
30	Perchlorate ion doped polypyrrole coated ZnS sphere composites as a sodium-ion battery anode with superior rate capability enhanced by pseudocapacitance. <i>RSC Advances</i> , 2017 , 7, 43636-43641	3.7	19
29	Size- and Density-Controllable Fabrication of the Platinum Nanoparticle/ITO Electrode by Pulse Potential Electrodeposition for Ammonia Oxidation. <i>ACS Applied Materials & Diterfaces</i> , 2017 , 9, 27765-27772	9.5	20
28	Studies on the Electrochemical Stability of Preferentially (100)-Oriented Pt Prepared through Three Different Methods. <i>ChemElectroChem</i> , 2017 , 4, 66-74	4.3	7
27	Sandwich nanostructured LiMnPO4/C as enhanced cathode materials for lithium-ion batteries. <i>Journal of Materials Science</i> , 2017 , 52, 3597-3612	4.3	11
26	Varied hydrogen evolution reaction properties of nickel phosphide nanoparticles with different compositions in acidic and alkaline conditions. <i>Journal of Materials Science</i> , 2017 , 52, 804-814	4.3	19
25	Optical Fiber Polarizer With Fell Film for Corrosion Monitoring. IEEE Sensors Journal, 2017, 17, 6904-69	9104	9
25	Optical Fiber Polarizer With Fett Film for Corrosion Monitoring. <i>IEEE Sensors Journal</i> , 2017 , 17, 6904-69. Sensing the Instant Corrosivity of Haze Using Electrochemical Probes by Electrochemical Noise Technique. <i>Electrochemistry</i> , 2017 , 85, 784-789	1.2	9
	Sensing the Instant Corrosivity of Haze Using Electrochemical Probes by Electrochemical Noise		
24	Sensing the Instant Corrosivity of Haze Using Electrochemical Probes by Electrochemical Noise Technique. <i>Electrochemistry</i> , 2017 , 85, 784-789 Atmospheric corrosion monitoring of field-exposed Q235B and T91 steels in Zhoushan offshore environment using electrochemical probes. <i>Journal Wuhan University of Technology, Materials</i>		
24	Sensing the Instant Corrosivity of Haze Using Electrochemical Probes by Electrochemical Noise Technique. <i>Electrochemistry</i> , 2017 , 85, 784-789 Atmospheric corrosion monitoring of field-exposed Q235B and T91 steels in Zhoushan offshore environment using electrochemical probes. <i>Journal Wuhan University of Technology, Materials Science Edition</i> , 2017 , 32, 1433-1440 Engineering Pyrite-Type Bimetallic Ni-Doped CoS2 Nanoneedle Arrays over a Wide Compositional Range for Enhanced Oxygen and Hydrogen Electrocatalysis with Flexible Property. <i>Catalysts</i> , 2017 ,	1.2	3 7
24 23 22	Sensing the Instant Corrosivity of Haze Using Electrochemical Probes by Electrochemical Noise Technique. <i>Electrochemistry</i> , 2017 , 85, 784-789 Atmospheric corrosion monitoring of field-exposed Q235B and T91 steels in Zhoushan offshore environment using electrochemical probes. <i>Journal Wuhan University of Technology, Materials Science Edition</i> , 2017 , 32, 1433-1440 Engineering Pyrite-Type Bimetallic Ni-Doped CoS2 Nanoneedle Arrays over a Wide Compositional Range for Enhanced Oxygen and Hydrogen Electrocatalysis with Flexible Property. <i>Catalysts</i> , 2017 , 7, 366 PdPt bimetallic nanoparticles enabled by shape control with halide ions and their enhanced	1.2	3 7 23
24 23 22 21	Sensing the Instant Corrosivity of Haze Using Electrochemical Probes by Electrochemical Noise Technique. <i>Electrochemistry</i> , 2017 , 85, 784-789 Atmospheric corrosion monitoring of field-exposed Q235B and T91 steels in Zhoushan offshore environment using electrochemical probes. <i>Journal Wuhan University of Technology, Materials Science Edition</i> , 2017 , 32, 1433-1440 Engineering Pyrite-Type Bimetallic Ni-Doped CoS2 Nanoneedle Arrays over a Wide Compositional Range for Enhanced Oxygen and Hydrogen Electrocatalysis with Flexible Property. <i>Catalysts</i> , 2017 , 7, 366 PdPt bimetallic nanoparticles enabled by shape control with halide ions and their enhanced catalytic activities. <i>Nanoscale</i> , 2016 , 8, 3962-72 Pt-Decorated highly porous flower-like Ni particles with high mass activity for ammonia	1.2 1 4	3 7 23 48
24 23 22 21 20	Sensing the Instant Corrosivity of Haze Using Electrochemical Probes by Electrochemical Noise Technique. <i>Electrochemistry</i> , 2017 , 85, 784-789 Atmospheric corrosion monitoring of field-exposed Q235B and T91 steels in Zhoushan offshore environment using electrochemical probes. <i>Journal Wuhan University of Technology, Materials Science Edition</i> , 2017 , 32, 1433-1440 Engineering Pyrite-Type Bimetallic Ni-Doped CoS2 Nanoneedle Arrays over a Wide Compositional Range for Enhanced Oxygen and Hydrogen Electrocatalysis with Flexible Property. <i>Catalysts</i> , 2017 , 7, 366 PdPt bimetallic nanoparticles enabled by shape control with halide ions and their enhanced catalytic activities. <i>Nanoscale</i> , 2016 , 8, 3962-72 Pt-Decorated highly porous flower-like Ni particles with high mass activity for ammonia electro-oxidation. <i>Journal of Materials Chemistry A</i> , 2016 , 4, 11060-11068 Bridge continuous deformation measurement technology based on fiber optic gyro. <i>Photonic</i>	1.2 1 4 7.7	3 7 23 48

16	Hydrothermal synthesis, characterisation and growth mechanism of Ni(SO4)0.3 (OH)1.4 nanowires. <i>Micro and Nano Letters</i> , 2015 , 10, 567-572	0.9	3
15	A review of electrolyte materials and compositions for electrochemical supercapacitors. <i>Chemical Society Reviews</i> , 2015 , 44, 7484-539	58.5	2002
14	Sapphire Fiber High-Temperature Tip Sensor With Multilayer Coating. <i>IEEE Photonics Technology Letters</i> , 2015 , 27, 741-743	2.2	12
13	Sub-3 nm Co3O4 nanofilms with enhanced supercapacitor properties. ACS Nano, 2015, 9, 1730-9	16.7	222
12	Shape-controlled synthesis of Pt-Ir nanocubes with preferential (100) orientation and their unusual enhanced electrocatalytic activities. <i>Science China Materials</i> , 2014 , 57, 13-25	7.1	38
11	Optical corrosion sensor based on fiber Bragg grating electroplated with Fe-C film. <i>Optical Engineering</i> , 2014 , 53, 077104	1.1	6
10	Corrosion of Fe-C coated FBG sensor and rebars: a comparative study 2012 ,		2
9	Fe¶-coated fibre Bragg grating sensor for steel corrosion monitoring. Corrosion Science, 2011, 53, 1933	-19938	41
8	Progress and Perspective of Metallic Glasses for Energy Conversion and Storage. <i>Advanced Energy Materials</i> ,2101092	21.8	3
7	Phase Transfer of Mo 2 C Induced by Boron Doping to Boost Nitrogen Reduction Reaction Catalytic Activity. <i>Advanced Functional Materials</i> ,2110783	15.6	7
6	Multiple Twin Boundary-Regulated Metastable Pd for Ethanol Oxidation Reaction. <i>Advanced Energy Materials</i> ,2103505	21.8	11
5	Engineering cobalt sulfide/oxide heterostructure with atomically mixed interfaces for synergistic electrocatalytic water splitting. <i>Nano Research</i> ,1	10	7
4	Building a Library for Catalysts Research Using High-Throughput Approaches. <i>Advanced Functional Materials</i> ,2107862	15.6	0
3	Ir Single Atoms Doped Cuboctahedral Pd for Boosted Methanol Oxidation Reaction. <i>Particle and Particle Systems Characterization</i> ,2200013	3.1	O
2	Rational Design and Spontaneous Sulfurization of NiCo-(oxy)Hydroxysulfides Nanosheets with Modulated Local Electronic Configuration for Enhancing Oxygen Electrocatalysis. <i>Advanced Energy Materials</i> ,2103275	21.8	5
1	Nanoporous nickel with rich adsorbed oxygen for efficient alkaline hydrogen evolution electrocatalysis. <i>Science China Materials</i> ,1	7.1	O