List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3871359/publications.pdf Version: 2024-02-01

WENRIN HII

#	Article	IF	CITATIONS
1	A review of electrolyte materials and compositions for electrochemical supercapacitors. Chemical Society Reviews, 2015, 44, 7484-7539.	38.1	2,723
2	Review of Hybrid Ion Capacitors: From Aqueous to Lithium to Sodium. Chemical Reviews, 2018, 118, 6457-6498.	47.7	741
3	Atomically Dispersed Binary Coâ€Ni Sites in Nitrogenâ€Doped Hollow Carbon Nanocubes for Reversible Oxygen Reduction and Evolution. Advanced Materials, 2019, 31, e1905622.	21.0	537
4	Generation of Nanoparticle, Atomicâ€Cluster, and Singleâ€Atom Cobalt Catalysts from Zeolitic Imidazole Frameworks by Spatial Isolation and Their Use in Zinc–Air Batteries. Angewandte Chemie - International Edition, 2019, 58, 5359-5364.	13.8	500
5	Decoupling electrolytes towards stable and high-energy rechargeable aqueous zinc–manganese dioxide batteries. Nature Energy, 2020, 5, 440-449.	39.5	430
6	NiCo 2 S 4 nanocrystals anchored on nitrogen-doped carbon nanotubes as a highly efficient bifunctional electrocatalyst for rechargeable zinc-air batteries. Nano Energy, 2017, 31, 541-550.	16.0	365
7	Identifying the Activation of Bimetallic Sites in NiCo ₂ S ₄ @gâ€C ₃ N ₄ â€CNT Hybrid Electrocatalysts for Synergistic Oxygen Reduction and Evolution. Advanced Materials, 2019, 31, e1808281.	21.0	315
8	Ultrathin Co ₃ O ₄ Layers with Large Contact Area on Carbon Fibers as Highâ€Performance Electrode for Flexible Zinc–Air Battery Integrated with Flexible Display. Advanced Energy Materials, 2017, 7, 1700779.	19.5	309
9	Atomically Thin Mesoporous Co ₃ O ₄ Layers Strongly Coupled with Nâ€rGO Nanosheets as Highâ€Performance Bifunctional Catalysts for 1D Knittable Zinc–Air Batteries. Advanced Materials, 2018, 30, 1703657.	21.0	302
10	Recent Advances in Flexible Zincâ€Based Rechargeable Batteries. Advanced Energy Materials, 2019, 9, 1802605.	19.5	296
11	Ultrafine Pt Nanoparticleâ€Decorated Pyriteâ€Type CoS ₂ Nanosheet Arrays Coated on Carbon Cloth as a Bifunctional Electrode for Overall Water Splitting. Advanced Energy Materials, 2018, 8, 1800935.	19.5	286
12	Interfacial engineering of Bi2S3/Ti3C2Tx MXene based on work function for rapid photo-excited bacteria-killing. Nature Communications, 2021, 12, 1224.	12.8	283
13	Challenges in Zinc Electrodes for Alkaline Zinc–Air Batteries: Obstacles to Commercialization. ACS Energy Letters, 2019, 4, 2259-2270.	17.4	276
14	Phase and composition controlled synthesis of cobalt sulfide hollow nanospheres for electrocatalytic water splitting. Nanoscale, 2018, 10, 4816-4824.	5.6	256
15	Identifying Dense NiSe ₂ /CoSe ₂ Heterointerfaces Coupled with Surface Highâ€Valence Bimetallic Sites for Synergistically Enhanced Oxygen Electrocatalysis. Advanced Materials, 2020, 32, e2000607.	21.0	251
16	Sub-3 nm Co ₃ O ₄ Nanofilms with Enhanced Supercapacitor Properties. ACS Nano, 2015, 9, 1730-1739.	14.6	248
17	Engineering Catalytic Active Sites on Cobalt Oxide Surface for Enhanced Oxygen Electrocatalysis. Advanced Energy Materials, 2018, 8, 1702222.	19.5	243
18	Sulfurâ€Grafted Hollow Carbon Spheres for Potassiumâ€ion Battery Anodes. Advanced Materials, 2019, 31, e1900429.	21.0	235

#	Article	IF	CITATIONS
19	Sequential Electrodeposition of Bifunctional Catalytically Active Structures in MoO ₃ /Ni–NiO Composite Electrocatalysts for Selective Hydrogen and Oxygen Evolution. Advanced Materials, 2020, 32, e2003414.	21.0	206
20	Utilizing solar energy to improve the oxygen evolution reaction kinetics in zinc–air battery. Nature Communications, 2019, 10, 4767.	12.8	199
21	Spontaneous Synthesis of Silverâ€Nanoparticleâ€Decorated Transitionâ€Metal Hydroxides for Enhanced Oxygen Evolution Reaction. Angewandte Chemie - International Edition, 2020, 59, 7245-7250.	13.8	196
22	A Rechargeable Zn–Air Battery with High Energy Efficiency and Long Life Enabled by a Highly Waterâ€Retentive Gel Electrolyte with Reaction Modifier. Advanced Materials, 2020, 32, e1908127.	21.0	172
23	Lattice‧train Engineering of Homogeneous NiS _{0.5} Se _{0.5} Core–Shell Nanostructure as a Highly Efficient and Robust Electrocatalyst for Overall Water Splitting. Advanced Materials, 2020, 32, e2000231.	21.0	158
24	Confronting the Challenges in Lithium Anodes for Lithium Metal Batteries. Advanced Science, 2021, 8, e2101111.	11.2	157
25	Metal–Air Batteries: From Static to Flow System. Advanced Energy Materials, 2018, 8, 1801396.	19.5	156
26	Dislocation‣trained IrNi Alloy Nanoparticles Driven by Thermal Shock for the Hydrogen Evolution Reaction. Advanced Materials, 2020, 32, e2006034.	21.0	148
27	Battery Technologies for Grid-Level Large-Scale Electrical Energy Storage. Transactions of Tianjin University, 2020, 26, 92-103.	6.4	146
28	Recent advances and challenges in divalent and multivalent metal electrodes for metal–air batteries. Journal of Materials Chemistry A, 2019, 7, 18183-18208.	10.3	139
29	Highly Active and Durable Singleâ€Atom Tungstenâ€Doped NiS _{0.5} Se _{0.5} Nanosheet @ NiS _{0.5} Se _{0.5} Nanorod Heterostructures for Water Splitting. Advanced Materials, 2022, 34, e2107053.	21.0	136
30	Clarifying the Controversial Catalytic Performance of Co(OH) ₂ and Co ₃ O ₄ for Oxygen Reduction/Evolution Reactions toward Efficient Zn–Air Batteries. ACS Applied Materials & Interfaces, 2017, 9, 22694-22703.	8.0	121
31	Designed synthesis of NiCo-LDH and derived sulfide on heteroatom-doped edge-enriched 3D rivet graphene films for high-performance asymmetric supercapacitor and efficient OER. Journal of Materials Chemistry A, 2018, 6, 8109-8119.	10.3	121
32	Controllable Synthesis of Ni _{<i>x</i>} Se (0.5 ≤i>x ≤) Nanocrystals for Efficient Rechargeable Zinc–Air Batteries and Water Splitting. ACS Applied Materials & Interfaces, 2018, 10, 13675-13684.	8.0	116
33	Bimetallic Metal–Organic-Framework/Reduced Graphene Oxide Composites as Bifunctional Electrocatalysts for Rechargeable Zn–Air Batteries. ACS Applied Materials & Interfaces, 2019, 11, 15662-15669.	8.0	107
34	Generation of Nanoparticle, Atomicâ€Cluster, and Singleâ€Atom Cobalt Catalysts from Zeolitic Imidazole Frameworks by Spatial Isolation and Their Use in Zinc–Air Batteries. Angewandte Chemie, 2019, 131, 5413-5418.	2.0	106
35	Encapsulating Cobalt Nanoparticles in Interconnected Nâ€Doped Hollow Carbon Nanofibers with Enriched CoNC Moiety for Enhanced Oxygen Electrocatalysis in Znâ€Air Batteries. Advanced Science, 2021, 8, e2101438.	11.2	104
36	In Situ Fabrication of Heterostructure on Nickel Foam with Tuned Composition for Enhancing Waterâ€\$plitting Performance. Small, 2018, 14, e1803666.	10.0	100

#	Article	IF	CITATIONS
37	Advances in the development of power supplies for the Internet of Everything. InformaÄnÃ-Materiály, 2019, 1, 130-139.	17.3	97
38	Review of Emerging Potassium–Sulfur Batteries. Advanced Materials, 2020, 32, e1908007.	21.0	91
39	Ultrathin Co ₃ O ₄ nanofilm as an efficient bifunctional catalyst for oxygen evolution and reduction reaction in rechargeable zinc–air batteries. Nanoscale, 2017, 9, 8623-8630.	5.6	90
40	Highâ€Temperature Shock Enabled Nanomanufacturing for Energyâ€Related Applications. Advanced Energy Materials, 2020, 10, 2001331.	19.5	86
41	Engineering the Surface Metal Active Sites of Nickel Cobalt Oxide Nanoplates toward Enhanced Oxygen Electrocatalysis for Zn–Air Battery. ACS Applied Materials & Interfaces, 2019, 11, 4915-4921.	8.0	84
42	Pt-Decorated highly porous flower-like Ni particles with high mass activity for ammonia electro-oxidation. Journal of Materials Chemistry A, 2016, 4, 11060-11068.	10.3	83
43	Boosting Energy Efficiency and Stability of Li–CO ₂ Batteries via Synergy between Ru Atom Clusters and Singleâ€Atom Ru–N ₄ sites in the Electrocatalyst Cathode. Advanced Materials, 2022, 34, e2200559.	21.0	83
44	Acceptorâ€Doping Accelerated Charge Separation in Cu ₂ O Photocathode for Photoelectrochemical Water Splitting: Theoretical and Experimental Studies. Angewandte Chemie - International Edition, 2020, 59, 18463-18467.	13.8	82
45	Carbonâ€based cathode materials for rechargeable zincâ€air batteries: From current collectors to bifunctional integrated air electrodes. , 2020, 2, 370-386.		82
46	Confined Fe ₂ VO ₄ âŠ,Nitrogenâ€Doped Carbon Nanowires with Internal Void Space for Highâ€Rate and Ultrastable Potassiumâ€lon Storage. Advanced Energy Materials, 2019, 9, 1902674.	19.5	81
47	Inversely Tuning the CO ₂ Electroreduction and Hydrogen Evolution Activity on Metal Oxide via Heteroatom Doping. Angewandte Chemie - International Edition, 2021, 60, 7602-7606.	13.8	81
48	Electrochemical Oxidation of Chlorine-Doped Co(OH) ₂ Nanosheet Arrays on Carbon Cloth as a Bifunctional Oxygen Electrode. ACS Applied Materials & Interfaces, 2018, 10, 796-805.	8.0	79
49	Identifying Heteroatomic and Defective Sites in Carbon with Dual-Ion Adsorption Capability for High Energy and Power Zinc Ion Capacitor. Nano-Micro Letters, 2021, 13, 59.	27.0	78
50	Nanosheets assembled into nickel sulfide nanospheres with enriched Ni ³⁺ active sites for efficient water-splitting and zinc–air batteries. Journal of Materials Chemistry A, 2019, 7, 23787-23793.	10.3	76
51	Rational Design and Spontaneous Sulfurization of NiCoâ€(oxy)Hydroxysulfides Nanosheets with Modulated Local Electronic Configuration for Enhancing Oxygen Electrocatalysis. Advanced Energy Materials, 2022, 12, .	19.5	74
52	Mesoporous Decoration of Freestanding Palladium Nanotube Arrays Boosts the Electrocatalysis Capabilities toward Formic Acid and Formate Oxidation. Advanced Energy Materials, 2019, 9, 1900955.	19.5	72
53	Atomic Layer Co ₃ O ₄ Nanosheets: The Key to Knittable Zn–Air Batteries. Small, 2018, 14, e1702987.	10.0	68
54	Extreme Environmental Thermal Shock Induced Dislocationâ€Rich Pt Nanoparticles Boosting Hydrogen Evolution Reaction. Advanced Materials, 2022, 34, e2106973.	21.0	68

#	Article	IF	CITATIONS
55	Airâ€Assisted Transient Synthesis of Metastable Nickel Oxide Boosting Alkaline Fuel Oxidation Reaction. Advanced Energy Materials, 2020, 10, 2001397.	19.5	66
56	A Simple Oneâ€Pot Strategy for Synthesizing Ultrafine SnS ₂ Nanoparticle/Graphene Composites as Anodes for Lithium/Sodiumâ€Ion Batteries. ChemSusChem, 2018, 11, 1549-1557.	6.8	63
57	Potassium″on Batteries: Sulfurâ€Grafted Hollow Carbon Spheres for Potassium″on Battery Anodes (Adv.) Tj	ETQ9110	0.784314 rgB
58	Mapping the Design of Electrolyte Materials for Electrically Rechargeable Zinc–Air Batteries. Advanced Materials, 2021, 33, e2006461.	21.0	63
59	Long-battery-life flexible zinc–air battery with near-neutral polymer electrolyte and nanoporous integrated air electrode. Journal of Materials Chemistry A, 2019, 7, 25449-25457.	10.3	61
60	Hierarchical iridium-based multimetallic alloy with double-core-shell architecture for efficient overall water splitting. Science China Materials, 2020, 63, 249-257.	6.3	59
61	Thermal Shock-Activated Spontaneous Growing of Nanosheets for Overall Water Splitting. Nano-Micro Letters, 2020, 12, 162.	27.0	59
62	Fe–C-coated fibre Bragg grating sensor for steel corrosion monitoring. Corrosion Science, 2011, 53, 1933-1938.	6.6	58
63	Shape-controlled synthesis of Pt-Ir nanocubes with preferential (100) orientation and their unusual enhanced electrocatalytic activities. Science China Materials, 2014, 57, 13-25.	6.3	58
64	PdPt bimetallic nanoparticles enabled by shape control with halide ions and their enhanced catalytic activities. Nanoscale, 2016, 8, 3962-3972.	5.6	55
65	Flexible and Wearable Power Sources for Nextâ€Generation Wearable Electronics. Batteries and Supercaps, 2020, 3, 1262-1274.	4.7	53
66	Multiple Twin Boundaryâ€Regulated Metastable Pd for Ethanol Oxidation Reaction. Advanced Energy Materials, 2022, 12, 2103505.	19.5	51
67	Phase Transfer of Mo ₂ C Induced by Boron Doping to Boost Nitrogen Reduction Reaction Catalytic Activity. Advanced Functional Materials, 2022, 32, .	14.9	51
68	1T′â€ReS ₂ Confined in 2Dâ€Honeycombed Carbon Nanosheets as New Anode Materials for Highâ€Performance Sodiumâ€ion Batteries. Advanced Energy Materials, 2019, 9, 1901146.	19.5	50
69	Tunable Periodically Ordered Mesoporosity in Palladium Membranes Enables Exceptional Enhancement of Intrinsic Electrocatalytic Activity for Formic Acid Oxidation. Angewandte Chemie - International Edition, 2020, 59, 5092-5101.	13.8	45
70	Pt embedded Ni3Se2@NiOOH core-shell dendrite-like nanoarrays on nickel as bifunctional electrocatalysts for overall water splitting. Science China Materials, 2019, 62, 1096-1104.	6.3	43
71	Engineering cobalt sulfide/oxide heterostructure with atomically mixed interfaces for synergistic electrocatalytic water splitting. Nano Research, 2022, 15, 1246-1253.	10.4	43
72	Defective Bimetallic Selenides for Selective CO ₂ Electroreduction to CO. Advanced Materials, 2022, 34, e2106354.	21.0	43

#	Article	IF	CITATIONS
73	Synthesis of Cubic-Shaped Pt Particles with (100) Preferential Orientation by a Quick, One-Step and Clean Electrochemical Method. ACS Applied Materials & Interfaces, 2017, 9, 18856-18864.	8.0	39
74	Self-Assembly of Graphene-Encapsulated Cu Composites for Nonenzymatic Glucose Sensing. ACS Omega, 2018, 3, 3420-3428.	3.5	38
75	Developing Indium-based Ternary Spinel Selenides for Efficient Solid Flexible Zn-Air Batteries and Water Splitting. ACS Applied Materials & Interfaces, 2020, 12, 8115-8123.	8.0	38
76	One-step synthesis of the PdPt bimetallic nanodendrites with controllable composition for methanol oxidation reaction. Science China Materials, 2018, 61, 697-706.	6.3	37
77	微纳结构èᇿ,j金属化å•̂物èf½æºè½¬åŒ–电å,¬åŒ–å‰,ç"ç©¶èį›å±•. Science China Materials,	2023,64,	1-26.
78	Investigation of the Environmental Stability of Poly(vinyl alcohol)–KOH Polymer Electrolytes for Flexible Zinc–Air Batteries. Frontiers in Chemistry, 2019, 7, 678.	3.6	32
79	Facile synthesis of nickel cobalt selenide hollow nanospheres as efficient bifunctional electrocatalyst for rechargeable Zn-air battery. Science China Materials, 2020, 63, 347-355.	6.3	32
80	Corrosion behavior of X65 steel in seawater containing sulfate reducing bacteria under aerobic conditions. Bioelectrochemistry, 2018, 122, 40-50.	4.6	31
81	Engineering Interface and Oxygen Vacancies of Ni <i>_x</i> Co _{1–<i>x</i>} Se ₂ to Boost Oxygen Catalysis for Flexible Zn–Air Batteries. ACS Applied Materials & Interfaces, 2019, 11, 27964-27972.	8.0	31
82	Bimetallic Multiâ€Level Layered Coâ€NiOOH/Ni ₃ S ₂ @NF Nanosheet for Hydrogen Evolution Reaction in Alkaline Medium. Small, 2022, 18, e2106904.	10.0	31
83	Recent Progress in Advanced Characterization Methods for Siliconâ€Based Lithiumâ€lon Batteries. Small Methods, 2019, 3, 1900158.	8.6	30
84	Kirigami-Inspired Flexible and Stretchable Zinc–Air Battery Based on Metal-Coated Sponge Electrodes. ACS Applied Materials & Interfaces, 2020, 12, 54833-54841.	8.0	30
85	Mesoporous Graphitic Carbonâ€Encapsulated Fe ₂ O ₃ Nanocomposite as Highâ€Rate Anode Material for Sodiumâ€Ion Batteries. Chemistry - A European Journal, 2018, 24, 14786-14793.	3.3	29
86	Co ₃ O ₄ nanoparticles supported on N-doped electrospinning carbon nanofibers as an efficient and bifunctional oxygen electrocatalyst for rechargeable Zn–air batteries. Inorganic Chemistry Frontiers, 2019, 6, 3554-3561.	6.0	29
87	A Design of Taper-Like Etched Multicore Fiber Refractive Index-Insensitive a Temperature Highly Sensitive Mach-Zehnder Interferometer. IEEE Sensors Journal, 2020, 20, 7074-7081.	4.7	29
88	Fiber Optic Hydrogen Sensor Based on Fabry–Perot Interferometer Coated With Sol-Gel Pt/WO _{ 3} Coating. Journal of Lightwave Technology, 2015, 33, 2530-2534.	4.6	28
89	Size- and Density-Controllable Fabrication of the Platinum Nanoparticle/ITO Electrode by Pulse Potential Electrodeposition for Ammonia Oxidation. ACS Applied Materials & Interfaces, 2017, 9, 27765-27772.	8.0	28
90	Engineering Pyrite-Type Bimetallic Ni-Doped CoS2 Nanoneedle Arrays over a Wide Compositional Range for Enhanced Oxygen and Hydrogen Electrocatalysis with Flexible Property. Catalysts, 2017, 7, 366.	3.5	28

#	Article	IF	CITATIONS
91	Nanomanufacturing of RGO NT Hybrid Film for Flexible Aqueous Alâ€ŀon Batteries. Small, 2020, 16, e2002856.	10.0	28
92	Fabrication and properties of a superhydrophobic film on an electroless plated magnesium alloy. RSC Advances, 2017, 7, 28909-28917.	3.6	27
93	Perchlorate ion doped polypyrrole coated ZnS sphere composites as a sodium-ion battery anode with superior rate capability enhanced by pseudocapacitance. RSC Advances, 2017, 7, 43636-43641.	3.6	27
94	Varied hydrogen evolution reaction properties of nickel phosphide nanoparticles with different compositions in acidic and alkaline conditions. Journal of Materials Science, 2017, 52, 804-814.	3.7	27
95	Cobalt sulfides constructed heterogeneous interfaces decorated on N,S-codoped carbon nanosheets as a highly efficient bifunctional oxygen electrocatalyst. Journal of Materials Chemistry A, 2021, 9, 13926-13935.	10.3	27
96	Designing Nanoporous Coralâ€Like Pt Nanowires Architecture for Methanol and Ammonia Oxidation Reactions. Advanced Functional Materials, 2022, 32, .	14.9	27
97	Optical Sensor for Steel Corrosion Monitoring Based on Etched Fiber Bragg Grating Sputtered With Iron Film. IEEE Sensors Journal, 2015, 15, 3551-3556.	4.7	26
98	Porous Zinc Anode Design for Zn-air Chemistry. Frontiers in Chemistry, 2019, 7, 656.	3.6	26
99	Regulating the Catalytically Active Sites in Low-Cost and Earth-Abundant 3d Transition-Metal-Based Electrode Materials for High-Performance Zinc–Air Batteries. Energy & Fuels, 2021, 35, 6483-6503.	5.1	26
100	Large-scale and template-free synthesis of hierarchically porous MnCo2O4.5 as anode material for lithium-ion batteries with enhanced electrochemical performance. Journal of Materials Science, 2017, 52, 5268-5282.	3.7	23
101	Highly Active and CO-Tolerant Trimetallic NiPtPd Hollow Nanocrystals as Electrocatalysts for Methanol Electro-oxidation Reaction. ACS Applied Energy Materials, 2019, 2, 4763-4773.	5.1	23
102	NiS/Ni3S2@NiWO4 nanoarrays towards all-solid-state hybrid supercapacitor with record-high energy density. Science China Materials, 2021, 64, 852-860.	6.3	23
103	Dynamic stretching–electroplating metalâ€coated textile for a flexible and stretchable zinc–air battery. , 2022, 4, 867-877.		23
104	Toward Flexible and Wearable Zn–Air Batteries from Cotton Textile Waste. ACS Omega, 2019, 4, 19341-19349.	3.5	21
105	Long-Life and Highly Utilized Zinc Anode for Aqueous Batteries Enabled by Electrolyte Additives with Synergistic Effects. ACS Applied Materials & Interfaces, 2022, 14, 18431-18438.	8.0	21
106	Metallic-State MoS ₂ Nanosheets with Atomic Modification for Sodium Ion Batteries with a High Rate Capability and Long Lifespan. ACS Applied Materials & Interfaces, 2021, 13, 19894-19903.	8.0	20
107	Enhanced antibacterial properties of biocompatible titanium <i>via</i> electrochemically deposited Ag/TiO ₂ nanotubes and chitosan–gelatin–Ag–ZnO complex coating. RSC Advances, 2019, 9, 4521-4529.	3.6	19
108	Advanced Characterization Techniques for Identifying the Key Active Sites of Gasâ€Involved Electrocatalysts. Advanced Functional Materials, 2020, 30, 2001704.	14.9	19

#	Article	IF	CITATIONS
109	Progress and Perspective of Metallic Glasses for Energy Conversion and Storage. Advanced Energy Materials, 2022, 12, .	19.5	19
110	The applications of singleâ€atom alloys in electrocatalysis: Progress and challenges. SmartMat, 2023, 4, .	10.7	19
111	Behavior of gold-enhanced electrocatalytic performance of NiPtAu hollow nanocrystals for alkaline methanol oxidation. Science China Materials, 2021, 64, 611-620.	6.3	18
112	Optical Fiber Polarizer With Fe–C Film for Corrosion Monitoring. IEEE Sensors Journal, 2017, 17, 6904-6910.	4.7	17
113	Tapered multicore fiber interferometer for ultra-sensitive temperature sensing with thermo-optical materials. Optics Express, 2021, 29, 35765.	3.4	16
114	Sapphire Fiber High-Temperature Tip Sensor With Multilayer Coating. IEEE Photonics Technology Letters, 2015, 27, 741-743.	2.5	15
115	Combining the Advantages of Hollow and One-Dimensional Structures: Balanced Activity and Stability toward Methanol Oxidation Based on the Interface of PtCo Nanochains. ACS Applied Energy Materials, 2019, 2, 1588-1593.	5.1	15
116	3D Foam Anode and Hydrogel Electrolyte for Highâ€₽erformance and Stable Flexible Zinc–Air Battery. ChemistrySelect, 2020, 5, 8305-8310.	1.5	15
117	Fabrication of the Ni-NiCl2 Composite Cathode Material for Fast-Response Thermal Batteries. Frontiers in Chemistry, 2021, 9, 679231.	3.6	15
118	Single atoms (Pt, Ir and Rh) anchored on activated NiCo LDH for alkaline hydrogen evolution reaction. Chemical Communications, 2022, 58, 8254-8257.	4.1	15
119	Tunable Periodically Ordered Mesoporosity in Palladium Membranes Enables Exceptional Enhancement of Intrinsic Electrocatalytic Activity for Formic Acid Oxidation. Angewandte Chemie, 2020, 132, 5130-5139.	2.0	14
120	Potassium Polyacrylate-Based Gel Polymer Electrolyte for Practical Zn–Ni Batteries. ACS Applied Materials & Interfaces, 2022, 14, 22847-22857.	8.0	14
121	Facile High Throughput Wet-Chemical Synthesis Approach Using a Microfluidic-Based Composition and Temperature Controlling Platform. Frontiers in Chemistry, 2020, 8, 579828.	3.6	13
122	Building a Library for Catalysts Research Using Highâ€Throughput Approaches. Advanced Functional Materials, 2022, 32, 2107862.	14.9	13
123	Optical corrosion sensor based on fiber Bragg grating electroplated with Fe-C film. Optical Engineering, 2014, 53, 077104.	1.0	12
124	Spontaneous Synthesis of Silverâ€Nanoparticleâ€Decorated Transitionâ€Metal Hydroxides for Enhanced Oxygen Evolution Reaction. Angewandte Chemie, 2020, 132, 7312-7317.	2.0	12
125	Toward Theoretical Capacity and Superhigh Power Density for Potassium–Selenium Batteries via Facilitating Reversible Potassiation Kinetics. ACS Applied Materials & Interfaces, 2022, 14, 6828-6840.	8.0	12
126	Ni-Doped Mo ₂ C Anchored on Graphitized Porous Carbon for Boosting Electrocatalytic N ₂ Reduction. ACS Applied Materials & Interfaces, 2022, 14, 17273-17281.	8.0	12

#	Article	IF	CITATIONS
127	Sandwich nanostructured LiMnPO4/C as enhanced cathode materials for lithium-ion batteries. Journal of Materials Science, 2017, 52, 3597-3612.	3.7	11
128	Zincâ€Air Batteries: Atomic Layer Co ₃ O ₄ Nanosheets: The Key to Knittable Zn–Air Batteries (Small 43/2018). Small, 2018, 14, 1870200.	10.0	11
129	Electrocatalysis: Ultrafine Pt Nanoparticleâ€Decorated Pyriteâ€Type CoS ₂ Nanosheet Arrays Coated on Carbon Cloth as a Bifunctional Electrode for Overall Water Splitting (Adv. Energy Mater.) Tj ETQq1 1 ().784314	rg&T /Overlo
130	Tapered multicore fiber interferometer for refractive index sensing with graphene enhancement. Applied Optics, 2020, 59, 3927.	1.8	11
131	Metal Air Batteries: Engineering Catalytic Active Sites on Cobalt Oxide Surface for Enhanced Oxygen Electrocatalysis (Adv. Energy Mater. 10/2018). Advanced Energy Materials, 2018, 8, 1870043.	19.5	10
132	Pt Monolayers on Electrodeposited Nanoparticles of Different Compositions for Ammonia Electro-Oxidation. Catalysts, 2019, 9, 4.	3.5	10
133	Scalable Preparation and Improved Discharge Properties of FeS2@CoS2 Cathode Materials for High-Temperature Thermal Battery. Nanomaterials, 2022, 12, 1360.	4.1	10
134	One-Step Fabrication and Localized Electrochemical Characterization of Continuous Al-Alloyed Intermetallic Surface Layer on Magnesium Alloy. Coatings, 2018, 8, 148.	2.6	9
135	2D and 3D Shape Sensing Based on 7-Core Fiber Bragg Gratings. Photonic Sensors, 2020, 10, 306-315.	5.0	9
136	Atmospheric corrosion monitoring of field-exposed Q235B and T91 steels in Zhoushan offshore environment using electrochemical probes. Journal Wuhan University of Technology, Materials Science Edition, 2017, 32, 1433-1440.	1.0	8
137	Effect of Interlayers on Microstructure and Properties of 2205/Q235B Duplex Stainless Steel Clad Plate. Acta Metallurgica Sinica (English Letters), 2020, 33, 679-692.	2.9	8
138	Numerical solution of strongly guided modes propagating in sapphire crystal fibers (α-Al2O3) for UV, VIS/IR wave-guiding. Results in Physics, 2020, 18, 103311.	4.1	8
139	Improving Discharge Voltage of Al-Air Batteries by Ga3+ Additives in NaCl-Based Electrolyte. Nanomaterials, 2022, 12, 1336.	4.1	8
140	Studies on the Electrochemical Stability of Preferentially (100)â€Oriented Pt Prepared through Three Different Methods. ChemElectroChem, 2017, 4, 66-74.	3.4	7
141	Influence of Acid Treatment on the Loading and Release Behavior of Halloysite with 2-Mercaptobenzothiazole. Journal of Nanoscience and Nanotechnology, 2019, 19, 7178-7184.	0.9	7
142	Bridge continuous deformation measurement technology based on fiber optic gyro. Photonic Sensors, 2016, 6, 71-77.	5.0	6
143	Nanoporous nickel with rich adsorbed oxygen for efficient alkaline hydrogen evolution electrocatalysis. Science China Materials, 2022, 65, 1825-1832.	6.3	6
144	Hydrothermal synthesis, characterisation and growth mechanism of Ni(SO ₄) _{0.3} (OH) _{1.4} nanowires. Micro and Nano Letters, 2015, 10, 567-572.	1.3	5

#	Article	IF	CITATIONS
145	Zinc–Air Batteries: A Rechargeable Zn–Air Battery with High Energy Efficiency and Long Life Enabled by a Highly Waterâ€Retentive Gel Electrolyte with Reaction Modifier (Adv. Mater. 22/2020). Advanced Materials, 2020, 32, 2070172.	21.0	5
146	Sensing the Instant Corrosivity of Haze Using Electrochemical Probes by Electrochemical Noise Technique. Electrochemistry, 2017, 85, 784-789.	1.4	4
147	Zinc–Air Batteries: Atomically Thin Mesoporous Co ₃ O ₄ Layers Strongly Coupled with Nâ€rGO Nanosheets as Highâ€Performance Bifunctional Catalysts for 1D Knittable Zinc–Air Batteries (Adv. Mater. 4/2018). Advanced Materials, 2018, 30, 1870027.	21.0	4
148	Online Monitoring of the Atmospheric Corrosion of Aluminium Alloys Using Electrochemical Noise Technique. Russian Journal of Electrochemistry, 2018, 54, 623-628.	0.9	4
149	Sodiumâ€lon Batteries: 1T′â€ReS ₂ Confined in 2Dâ€Honeycombed Carbon Nanosheets as New Anode Materials for Highâ€Performance Sodiumâ€lon Batteries (Adv. Energy Mater. 30/2019). Advanced Energy Materials, 2019, 9, 1970117.	19.5	4
150	Simultaneous measurement of refractive index and temperature based on reflective LPG-FBGs. , 2019, , .		4
151	Effect of Process Parameters on Electrodeposited Nanocrystalline Chromium Coatings Investigated by an Orthogonal Experiment. Protection of Metals and Physical Chemistry of Surfaces, 2020, 56, 857-866.	1.1	4
152	Preparation of Ni3Fe2@NC/CC Integrated Electrode and Its Application in Zinc-Air Battery. Frontiers in Chemistry, 2020, 8, 575288.	3.6	4
153	A Solutionâ€based Method for Synthesizing Pyriteâ€ŧype Ferrous Metal Sulfide Microspheres with Efficient OER Activity. Chemistry - an Asian Journal, 2020, 15, 2231-2238.	3.3	4
154	Life-Cycle Economic Evaluation of Batteries for Electeochemical Energy Storage Systems. Journal of Electrical Engineering and Technology, 2021, 16, 2497.	2.0	4
155	Ir Single Atoms Doped Cuboctahedral Pd for Boosted Methanol Oxidation Reaction. Particle and Particle Systems Characterization, 2022, 39, .	2.3	4
156	Development and Challenges of Biphasic Membrane‣ess Redox Batteries. Advanced Science, 2022, 9, e2105468.	11.2	4
157	Refractive index interferometer based on SMF-MMF-TMCF-SMF structure with low temperature sensitivity. Optical Fiber Technology, 2020, 57, 102233.	2.7	3
158	Zincâ€Air Batteries: Mapping the Design of Electrolyte Materials for Electrically Rechargeable Zinc–Air Batteries (Adv. Mater. 31/2021). Advanced Materials, 2021, 33, 2170243.	21.0	3
159	Corrosion of Fe-C coated FBG sensor and rebars: a comparative study. Proceedings of SPIE, 2012, , .	0.8	2
160	Finite-Element Analysis on Percolation Performance of Foam Zinc. ACS Omega, 2018, 3, 11018-11025.	3.5	2
161	Methods for producing an easily assembled zinc-air battery. MethodsX, 2020, 7, 100973.	1.6	2
162	Clean Electrochemical Synthesis of Pd–Pt Bimetallic Dendrites with High Electrocatalytic Performance for the Oxidation of Formic Acid. Materials, 2022, 15, 1554.	2.9	2

#	Article	IF	CITATIONS
163	Electrocatalysis: Mesoporous Decoration of Freestanding Palladium Nanotube Arrays Boosts the Electrocatalysis Capabilities toward Formic Acid and Formate Oxidation (Adv. Energy Mater. 25/2019). Advanced Energy Materials, 2019, 9, 1970100.	19.5	1
164	Flexible and Wearable Power Sources for Nextâ€Generation Wearable Electronics. Batteries and Supercaps, 2020, 3, 1261-1261.	4.7	1
165	Study on Wettability and Corrosion Behavior of Al2O3 Doped Polyurea Coatings. Protection of Metals and Physical Chemistry of Surfaces, 2020, 56, 965-972.	1.1	1
166	Frontispiz: Tunable Periodically Ordered Mesoporosity in Palladium Membranes Enables Exceptional Enhancement of Intrinsic Electrocatalytic Activity for Formic Acid Oxidation. Angewandte Chemie, 2020, 132, .	2.0	1
167	Palladium Particles Modified by Mixed-Frequency Square-Wave Potential Treatment to Enhance Electrocatalytic Performance for Formic Acid Oxidation. Catalysts, 2021, 11, 522.	3.5	1
168	Thermo-coupled Temperature Sensors by seven-core MCF Structures. , 2020, , .		1
169	Wavelength-Dependent Polarization Beam Splitter Based on Birefringent Tapered Multicore Fiber. Journal of Lightwave Technology, 2022, 40, 2128-2135.	4.6	1
170	van der Waals forces enhanced light–graphene interaction in optical microfiber polarizer. AIP Advances, 2022, 12, 045027.	1.3	1
171	Polarization Beam Splitter based on Tapered MCF with PDMS Substrate. , 2019, , .		0
172	Frontispiece: Tunable Periodically Ordered Mesoporosity in Palladium Membranes Enables Exceptional Enhancement of Intrinsic Electrocatalytic Activity for Formic Acid Oxidation. Angewandte Chemie - International Edition, 2020, 59, .	13.8	0
173	Extreme Environmental Thermal Shock Induced Dislocationâ€Rich Pt Nanoparticles Boosting Hydrogen Evolution Reaction (Adv. Mater. 2/2022). Advanced Materials. 2022. 34	21.0	0