

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/387126/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Tunable Ratiometric Fluorescence Sensing of Intracellular pH by Aggregation-Induced Emission-Active Hyperbranched Polymer Nanoparticles. Chemistry of Materials, 2015, 27, 3450-3455.	6.7	105

Thiol-promoted catalytic synthesis of diphenolic acid with sulfonated hyperbranched poly(arylene) Tj ETQq0 0 0 rgBT/Overlock 10 Tf 50 $^{20}_{64}$

3	Copper(II) atalyzed Hydrosilylation of Ketones Using Chiral Dipyridylphosphane Ligands: Highly Enantioselective Synthesis of Valuable Alcohols. Chemistry - A European Journal, 2011, 17, 14234-14240.	3.3	57
4	Cobalt(ii)-catalyzed asymmetric hydrosilylation of simple ketones using dipyridylphosphine ligands in air. Organic and Biomolecular Chemistry, 2011, 9, 5652.	2.8	53
5	Molecular design of sulfonated hyperbranched poly(arylene oxindole)s for efficient cellulose conversion to levulinic acid. Green Chemistry, 2016, 18, 1694-1705.	9.0	53
6	Fast catalytic conversion of recalcitrant cellulose into alkyl levulinates and levulinic acid in the presence of soluble and recoverable sulfonated hyperbranched poly(arylene oxindole)s. Green Chemistry, 2017, 19, 153-163.	9.0	53
7	Application of Copper(II)–Dipyridylphosphine Catalyst in the Asymmetric Hydrosilylation of Simple Ketones in Air. Chemistry - A European Journal, 2009, 15, 5888-5891.	3.3	44
8	Acidic mesostructured silica-carbon nanocomposite catalysts for biofuels and chemicals synthesis from sugars in alcoholic solutions. Applied Catalysis B: Environmental, 2017, 206, 74-88.	20.2	42
9	Mechanistic Insights into the Kinetic and Regiochemical Control of the Thiol-Promoted Catalytic Synthesis of Diphenolic Acid. ACS Catalysis, 2012, 2, 2700-2704.	11.2	38
10	Regioselective synthesis of renewable bisphenols from 2,3-pentanedione and their application as plasticizers. Green Chemistry, 2014, 16, 1999-2007.	9.0	28
11	Copper-dipyridylphosphine-catalyzed hydrosilylation: enantioselective synthesis of aryl- and heteroarylcycloalkyl alcohols. Organic and Biomolecular Chemistry, 2013, 11, 929-937.	2.8	23
12	Water-soluble sulfonated hyperbranched poly(arylene oxindole) catalysts as functional biomimics of cellulases. Chemical Communications, 2016, 52, 2756-2759.	4.1	9
13	A versatile A2+ B3approach to hyperbranched polyacenaphthenequinones. Journal of Polymer Science Part A, 2014, 52, 2596-2603.	2.3	5
14	Single‣tep Sustainable Production of Hydroxyâ€Functionalized 2â€Imidazolines from Carbohydrates. ChemSusChem, 2022, 15, .	6.8	4
15	Mesostructured materials. , 2021, , .		1