
Palmer Taylor

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3870919/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Click Chemistry In Situ: Acetylcholinesterase as a Reaction Vessel for the Selective Assembly of a Femtomolar Inhibitor from an Array of Building Blocks. Angewandte Chemie - International Edition, 2002, 41, 1053-1057.	7.2	679
2	Structures of Aplysia AChBP complexes with nicotinic agonists and antagonists reveal distinctive binding interfaces and conformations. EMBO Journal, 2005, 24, 3635-3646.	3.5	602
3	Primary structure of Torpedo californica acetylcholinesterase deduced from its cDNA sequence. Nature, 1986, 319, 407-409.	13.7	437
4	Three distinct domains in the cholinesterase molecule confer selectivity for acetyl- and butyrylcholinesterase inhibitors. Biochemistry, 1993, 32, 12074-12084.	1.2	437
5	In Situ Click Chemistry:Â Enzyme Inhibitors Made to Their Own Specifications. Journal of the American Chemical Society, 2004, 126, 12809-12818.	6.6	395
6	Structural insights into ligand interactions at the acetylcholinesterase peripheral anionic site. EMBO Journal, 2003, 22, 1-12.	3.5	362
7	Interaction of fluorescence probes with acetylcholinesterase. Site and specificity of propidium binding. Biochemistry, 1975, 14, 1989-1997.	1.2	360
8	Acetylcholinesterase inhibition by fasciculin: Crystal structure of the complex. Cell, 1995, 83, 503-512.	13.5	357
9	LRRTM2 Interacts with Neurexin1 and Regulates Excitatory Synapse Formation. Neuron, 2009, 64, 799-806.	3.8	338
10	Amino acid residues controlling acetylcholinesterase and butyrylcholinesterase specificity. Biochemistry, 1993, 32, 12-17.	1.2	314
11	Crystal structure of a Cbtx–AChBP complex reveals essential interactions between snake α-neurotoxins and nicotinic receptors. EMBO Journal, 2005, 24, 1512-1522.	3.5	302
12	Freeze-frame inhibitor captures acetylcholinesterase in a unique conformation. Proceedings of the National Academy of Sciences of the United States of America, 2004, 101, 1449-1454.	3.3	297
13	Coupling of agonist binding to channel gating in an ACh-binding protein linked to an ion channel. Nature, 2004, 430, 896-900.	13.7	255
14	The Arg451Cys-Neuroligin-3 Mutation Associated with Autism Reveals a Defect in Protein Processing. Journal of Neuroscience, 2004, 24, 4889-4893.	1.7	214
15	Electrostatic Influence on the Kinetics of Ligand Binding to Acetylcholinesterase. Journal of Biological Chemistry, 1997, 272, 23265-23277.	1.6	204
16	Molecular cloning of mouse acetylcholinesterase: Tissue distribution of alternatively spliced mRNA species. Neuron, 1990, 5, 317-327.	3.8	174
17	Structural determinants in phycotoxins and AChBP conferring high affinity binding and nicotinic AChR antagonism. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107, 6076-6081.	3.3	156
18	Structural determinants for interaction of partial agonists with acetylcholine binding protein and neuronal α7 nicotinic acetylcholine receptor. EMBO Journal, 2009, 28, 3040-3051.	3.5	153

#	Article	IF	CITATIONS
19	Expression of recombinant acetylcholinesterase in a baculovirus system: kinetic properties of glutamate 199 mutants. Biochemistry, 1992, 31, 9760-9767.	1.2	143
20	Structural Analysis of the Synaptic Protein Neuroligin and Its β-Neurexin Complex: Determinants for Folding and Cell Adhesion. Neuron, 2007, 56, 979-991.	3.8	142
21	Structural and Ligand Recognition Characteristics of an Acetylcholine-binding Protein from Aplysia californica. Journal of Biological Chemistry, 2004, 279, 24197-24202.	1.6	136
22	Agonist-mediated Conformational Changes in Acetylcholine-binding Protein Revealed by Simulation and Intrinsic Tryptophan Fluorescence. Journal of Biological Chemistry, 2005, 280, 8443-8451.	1.6	119
23	Crystal Structure of Mouse Acetylcholinesterase. Journal of Biological Chemistry, 1999, 274, 2963-2970.	1.6	117
24	Gene Selection, Alternative Splicing, and Post-translational Processing Regulate Neuroligin Selectivity for β-Neurexinsâ€. Biochemistry, 2006, 45, 12816-12827.	1.2	117
25	Mechanism of Oxime Reactivation of Acetylcholinesterase Analyzed by Chirality and Mutagenesisâ€. Biochemistry, 2000, 39, 5750-5757.	1.2	116
26	Galanthamine and Non-competitive Inhibitor Binding to ACh-binding Protein: Evidence for a Binding Site on Non-α-subunit Interfaces of Heteromeric Neuronal Nicotinic Receptors. Journal of Molecular Biology, 2007, 369, 895-901.	2.0	111
27	An in vivo biosensor for neurotransmitter release and in situ receptor activity. Nature Neuroscience, 2010, 13, 127-132.	7.1	110
28	New Structural Scaffolds for Centrally Acting Oxime Reactivators of Phosphylated Cholinesterases. Journal of Biological Chemistry, 2011, 286, 19422-19430.	1.6	110
29	Specificity and Orientation of Trigonal Carboxyl Esters and Tetrahedral Alkylphosphonyl Esters in Cholinesterases. Biochemistry, 1995, 34, 11528-11536.	1.2	108
30	Acetylcholinesterase active centre and gorge conformations analysed by combinatorial mutations and enantiomeric phosphonates. Biochemical Journal, 2003, 373, 33-40.	1.7	108
31	Single gene encodes glycophospholipid-anchored and asymmetric acetylcholinesterase forms: Alternative coding exons contain inverted repeat sequences. Neuron, 1990, 4, 289-301.	3.8	105
32	Mutant Cholinesterases Possessing Enhanced Capacity for Reactivation of Their Phosphonylated Conjugatesâ€. Biochemistry, 2004, 43, 3222-3229.	1.2	105
33	Refinement of Structural Leads for Centrally Acting Oxime Reactivators of Phosphylated Cholinesterases. Journal of Biological Chemistry, 2012, 287, 11798-11809.	1.6	97
34	Amino Acid Residues Controlling Reactivation of Organophosphonyl Conjugates of Acetylcholinesterase by Mono- and Bisquaternary Oximes. Journal of Biological Chemistry, 1995, 270, 6370-6380.	1.6	95
35	Tryptophan Fluorescence Reveals Conformational Changes in the Acetylcholine Binding Protein. Journal of Biological Chemistry, 2002, 277, 41299-41302.	1.6	93
36	A new crystal form of human acetylcholinesterase for exploratory room-temperature crystallography studies. Chemico-Biological Interactions, 2019, 309, 108698.	1.7	82

#	Article	IF	CITATIONS
37	Structural bases for the specificity of cholinesterase catalysis and inhibition. Toxicology Letters, 1995, 82-83, 453-458.	0.4	79
38	Generation of Candidate Ligands for Nicotinic Acetylcholine Receptors via in situ Click Chemistry with a Soluble Acetylcholine Binding Protein Template. Journal of the American Chemical Society, 2012, 134, 6732-6740.	6.6	79
39	Aspartate 74 as a Primary Determinant in Acetylcholinesterase Governing Specificity to Cationic Organophosphonatesâ€. Biochemistry, 1996, 35, 10995-11004.	1.2	78
40	Interaction Kinetics of Reversible Inhibitors and Substrates with Acetylcholinesterase and Its Fasciculin 2 Complex. Journal of Biological Chemistry, 2001, 276, 4622-4633.	1.6	74
41	Mapping the elusive neonicotinoid binding site. Proceedings of the National Academy of Sciences of the United States of America, 2007, 104, 9075-9080.	3.3	74
42	Phosphoryl Oxime Inhibition of Acetylcholinesterase during Oxime Reactivation Is Prevented by Edrophonium. Biochemistry, 1999, 38, 9937-9947.	1.2	73
43	Catalytic detoxification of nerve agent and pesticide organophosphates by butyrylcholinesterase assisted with non-pyridinium oximes. Biochemical Journal, 2013, 450, 231-242.	1.7	73
44	Imidazole Aldoximes Effective in Assisting Butyrylcholinesterase Catalysis of Organophosphate Detoxification. Journal of Medicinal Chemistry, 2014, 57, 1378-1389.	2.9	73
45	Synaptic Arrangement of the Neuroligin/β-Neurexin Complex Revealed by X-Ray and Neutron Scattering. Structure, 2007, 15, 693-705.	1.6	64
46	Centrally acting oximes in reactivation of tabun-phosphoramidated AChE. Chemico-Biological Interactions, 2013, 203, 77-80.	1.7	64
47	Creating an α7 Nicotinic Acetylcholine Recognition Domain from the Acetylcholine-binding Protein. Journal of Biological Chemistry, 2011, 286, 42555-42565.	1.6	60
48	Cyclic imine toxins from dinoflagellates: a growing family of potent antagonists of the nicotinic acetylcholine receptors. Journal of Neurochemistry, 2017, 142, 41-51.	2.1	59
49	Rapid binding of a cationic active site inhibitor to wild type and mutant mouse acetylcholinesterase: Brownian dynamics simulation including diffusion in the active site gorge. Biopolymers, 1998, 46, 465-474.	1.2	58
50	Targeting of Acetylcholinesterase in Neurons In Vivo: A Dual Processing Function for the Proline-Rich Membrane Anchor Subunit and the Attachment Domain on the Catalytic Subunit. Journal of Neuroscience, 2009, 29, 4519-4530.	1.7	58
51	Soluble monomeric acetylcholinesterase from mouse: Expression, purification, and crystallization in complex with fasciculin. Protein Science, 1996, 5, 672-679.	3.1	56
52	The Crystal Structure of the α-Neurexin-1 Extracellular Region Reveals a Hinge Point for Mediating Synaptic Adhesion and Function. Structure, 2011, 19, 767-778.	1.6	56
53	A Mutation Linked with Autism Reveals a Common Mechanism of Endoplasmic Reticulum Retention for the α,β-Hydrolase Fold Protein Family. Journal of Biological Chemistry, 2006, 281, 9667-9676.	1.6	53
54	α-Conotoxin OmIA Is a Potent Ligand for the Acetylcholine-binding Protein as Well as α3β2 and α7 Nicotinic Acetylcholine Receptors. Journal of Biological Chemistry, 2006, 281, 24678-24686.	1.6	51

#	Article	IF	CITATIONS
55	Oxime-assisted Acetylcholinesterase Catalytic Scavengers of Organophosphates That Resist Aging. Journal of Biological Chemistry, 2011, 286, 29718-29724.	1.6	49
56	Mutant acetylcholinesterases as potential detoxification agents for organophosphate poisoning. Biochemical Pharmacology, 1997, 54, 269-274.	2.0	48
57	Acrylodan-conjugated Cysteine Side Chains Reveal Conformational State and Ligand Site Locations of the Acetylcholine-binding Protein. Journal of Biological Chemistry, 2004, 279, 28483-28491.	1.6	48
58	Ligand-induced Conformational Changes in the Acetylcholine-binding Protein Analyzed by Hydrogen-Deuterium Exchange Mass Spectrometry. Journal of Biological Chemistry, 2006, 281, 12170-12177.	1.6	46
59	Spectroscopic Analysis of Benzylidene Anabaseine Complexes with Acetylcholine Binding Proteins as Models for Ligandâ´'Nicotinic Receptor Interactions. Biochemistry, 2006, 45, 8894-8902.	1.2	45
60	Nonidentity of the α-Neurotoxin Binding Sites on the Nicotinic Acetylcholine Receptor Revealed by Modification in α-Neurotoxin and Receptor Structures. Biochemistry, 1997, 36, 12836-12844.	1.2	44
61	Curariform Antagonists Bind in Different Orientations to Acetylcholine-binding Protein. Journal of Biological Chemistry, 2003, 278, 23020-23026.	1.6	44
62	Structure-guided drug design: Conferring selectivity among neuronal nicotinic receptor and acetylcholine-binding protein subtypes. Biochemical Pharmacology, 2007, 74, 1164-1171.	2.0	42
63	Marine Macrocyclic Imines, Pinnatoxins A and G: Structural Determinants and Functional Properties to Distinguish Neuronal α7 from Muscle α12βγÎ′ nAChRs. Structure, 2015, 23, 1106-1115.	1.6	42
64	Catalytic Soman Scavenging by the Y337A/F338A Acetylcholinesterase Mutant Assisted with Novel Site-Directed Aldoximes. Chemical Research in Toxicology, 2015, 28, 1036-1044.	1.7	41
65	Neuroligin Trafficking Deficiencies Arising from Mutations in the α/β-Hydrolase Fold Protein Family. Journal of Biological Chemistry, 2010, 285, 28674-28682.	1.6	40
66	Mechanisms of Inhibition and Potentiation of α4β2 Nicotinic Acetylcholine Receptors by Members of the Ly6 Protein Family. Journal of Biological Chemistry, 2015, 290, 24509-24518.	1.6	40
67	Structural insights into the exquisite selectivity of neurexin/neuroligin synaptic interactions. EMBO Journal, 2010, 29, 2461-2471.	3.5	38
68	Planarian cholinesterase: in vitro characterization of an evolutionarily ancient enzyme to study organophosphorus pesticide toxicity and reactivation. Archives of Toxicology, 2017, 91, 2837-2847.	1.9	38
69	Protein Folding Determinants: Structural Features Determining Alternative Disulfide Pairing in α- and χ∫λ-Conotoxinsâ€,‡. Biochemistry, 2007, 46, 3338-3355.	1.2	37
70	Mutation of acetylcholinesterase to enhance oxime-assisted catalytic turnover of methylphosphonates. Toxicology, 2007, 233, 79-84.	2.0	37
71	Reversibly Bound and Covalently Attached Ligands Induce Conformational Changes in the Omega Loop, Cys69–Cys96, of Mouse Acetylcholinesterase. Journal of Biological Chemistry, 2001, 276, 42196-42204.	1.6	36
72	Nanosecond Dynamics of the Mouse Acetylcholinesterase Cys69–Cys96 Omega Loop. Journal of Biological Chemistry, 2003, 278, 30905-30911.	1.6	36

#	Article	IF	CITATIONS
73	Orientation of α-Neurotoxin at the Subunit Interfaces of the Nicotinic Acetylcholine Receptorâ€. Biochemistry, 2000, 39, 15388-15398.	1.2	35
74	Characterizing Ligand-Gated Ion Channel Receptors with Genetically Encoded Ca++ Sensors. PLoS ONE, 2011, 6, e16519.	1.1	35
75	Pharmacology, Pharmacokinetics, and Tissue Disposition of Zwitterionic Hydroxyiminoacetamido Alkylamines as Reactivating Antidotes for Organophosphate Exposure. Journal of Pharmacology and Experimental Therapeutics, 2018, 367, 363-372.	1.3	35
76	Post-exposure treatment with the oxime RS194B rapidly reverses early and advanced symptoms in macaques exposed to sarin vapor. Chemico-Biological Interactions, 2017, 274, 50-57.	1.7	34
77	A virtual screening study of the acetylcholine binding protein using a relaxed–complex approach. Computational Biology and Chemistry, 2009, 33, 160-170.	1.1	32
78	Influence of Agonists and Antagonists on the Segmental Motion of Residues near the Agonist Binding Pocket of the Acetylcholine-binding Protein. Journal of Biological Chemistry, 2006, 281, 39708-39718.	1.6	30
79	Mechanism of interaction of novel uncharged, centrally active reactivators with OP-hAChE conjugates. Chemico-Biological Interactions, 2013, 203, 67-71.	1.7	30
80	Steric and Dynamic Parameters Influencing In Situ Cycloadditions to Form Triazole Inhibitors with Crystalline Acetylcholinesterase. Journal of the American Chemical Society, 2016, 138, 1611-1621.	6.6	30
81	Planarian cholinesterase: molecular and functional characterization of an evolutionarily ancient enzyme to study organophosphorus pesticide toxicity. Archives of Toxicology, 2018, 92, 1161-1176.	1.9	30
82	Post-exposure treatment with the oxime RS194B rapidly reactivates and reverses advanced symptoms of lethal inhaled paraoxon in macaques. Toxicology Letters, 2018, 293, 229-234.	0.4	30
83	Active site mutant acetylcholinesterase interactions with 2-PAM, HI-6, and DDVP. Biochemical and Biophysical Research Communications, 2006, 342, 973-978.	1.0	29
84	Inhibitors of Different Structure Induce Distinguishing Conformations in the Omega Loop, Cys69–Cys96, of Mouse Acetylcholinesterase. Journal of Biological Chemistry, 2002, 277, 43301-43308.	1.6	28
85	Selectivity Optimization of Substituted 1,2,3-Triazoles as α7 Nicotinic Acetylcholine Receptor Agonists. ACS Chemical Neuroscience, 2015, 6, 1317-1330.	1.7	27
86	Acetylcholinesterase: Converting a vulnerable target to a template for antidotes and detection of inhibitor exposure. Toxicology, 2007, 233, 70-78.	2.0	26
87	Acetylcholinesterase Expression in Muscle Is Specifically Controlled by a Promoter-Selective Enhancesome in the First Intron. Journal of Neuroscience, 2008, 28, 2459-2470.	1.7	26
88	Cis and Trans Actions of the Cholinesterase-like Domain within the Thyroglobulin Dimer. Journal of Biological Chemistry, 2010, 285, 17564-17573.	1.6	26
89	Probing the Active Center Gorge of Acetylcholinesterase by Fluorophores Linked to Substituted Cysteines. Journal of Biological Chemistry, 2000, 275, 22401-22408.	1.6	25
90	Multi-detection method for five common microalgal toxins based on the use of microspheres coupled to a flow-cytometry system. Analytica Chimica Acta, 2014, 850, 57-64.	2.6	25

#	Article	IF	CITATIONS
91	Studies on the Topography of the Catalytic Site of Acetylcholinesterase Using Polyclonal and Monoclonal Antibodies. Journal of Neurochemistry, 1990, 55, 756-763.	2.1	24
92	Interaction kinetics of oximes with native, phosphylated and aged human acetylcholinesterase. Chemico-Biological Interactions, 2010, 187, 163-166.	1.7	24
93	Reversal of Tabun Toxicity Enabled by a Triazoleâ€Annulated Oxime Library—Reactivators of Acetylcholinesterase. Chemistry - A European Journal, 2019, 25, 4100-4114.	1.7	24
94	Rational design, synthesis, and evaluation of uncharged, "smart―bis-oxime antidotes of organophosphate-inhibited human acetylcholinesterase. Journal of Biological Chemistry, 2020, 295, 4079-4092.	1.6	24
95	Structure and Function of Cholinesterases. , 2006, , 161-186.		23
96	Theoretical analysis of the structure of the peptide fasciculin and its docking to acetylcholinesterase. Protein Science, 1995, 4, 703-715.	3.1	23
97	Mechanistic studies of new oximes reactivators of human butyryl cholinesterase inhibited by cyclosarin and sarin. Journal of Biomolecular Structure and Dynamics, 2017, 35, 1272-1282.	2.0	22
98	HI-6 assisted catalytic scavenging of VX by acetylcholinesterase choline binding site mutants. Chemico-Biological Interactions, 2016, 259, 148-153.	1.7	20
99	Spinal Nicotinic Receptor Expression in Spontaneously Hypertensive Rats. Hypertension, 1996, 28, 1093-1099.	1.3	19
100	Structural basis for cooperative interactions of substituted 2-aminopyrimidines with the acetylcholine binding protein. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 10749-10754.	3.3	18
101	Assessment of ionizable, zwitterionic oximes as reactivating antidotal agents for organophosphate exposure. Chemico-Biological Interactions, 2019, 308, 194-197.	1.7	18
102	Synthesis of Selective Agonists for the α7 Nicotinic Acetylcholine Receptor with In Situ Click-Chemistry on Acetylcholine-Binding Protein Templates. Molecular Pharmacology, 2012, 82, 687-699.	1.0	17
103	Limitations in current acetylcholinesterase structure–based design of oxime antidotes for organophosphate poisoning. Annals of the New York Academy of Sciences, 2016, 1378, 41-49.	1.8	17
104	Peripheral site ligands accelerate inhibition of acetylcholinesterase by neutral organophosphates. Journal of Applied Toxicology, 2001, 21, S13-S14.	1.4	16
105	Structure and regulation of expression of the acetylcholinesterase gene. Chemico-Biological Interactions, 1993, 87, 199-207.	1.7	15
106	Substituted 2-Aminopyrimidines Selective for α7-Nicotinic Acetylcholine Receptor Activation and Association with Acetylcholine Binding Proteins. Journal of the American Chemical Society, 2017, 139, 3676-3684.	6.6	15
107	Acetylcholinesterase and Nicotinic Acetylcholine Receptor Expression Diverge in Muscular Dysgenic Mice Lacking the Lâ€īype Calcium Channel. Journal of Neurochemistry, 1996, 67, 111-118.	2.1	13
108	Structural Dynamics of the α-Neurotoxinâ^'Acetylcholine-Binding Protein Complex: Hydrodynamic and Fluorescence Anisotropy Decay Analysesâ€. Biochemistry, 2005, 44, 16602-16611.	1.2	13

#	Article	IF	CITATIONS
109	Cognitive Improvements in a Mouse Model with Substituted 1,2,3-Triazole Agonists for Nicotinic Acetylcholine Receptors. ACS Chemical Neuroscience, 2015, 6, 1331-1340.	1.7	13
110	Productive reorientation of a bound oxime reactivator revealed in room temperature X-ray structures of native and VX-inhibited human acetylcholinesterase. Journal of Biological Chemistry, 2019, 294, 10607-10618.	1.6	13
111	Evaluation of high-affinity phenyltetrahydroisoquinoline aldoximes, linked through anti-triazoles, as reactivators of phosphylated cholinesterases. Toxicology Letters, 2020, 321, 83-89.	0.4	13
112	Acetylcholinesterase (AChE) gene modification in transgenic animals: Functional consequences of selected exon and regulatory region deletion. Chemico-Biological Interactions, 2005, 157-158, 79-86.	1.7	12
113	Synthesis, Pharmacological Characterization, and Structure–Activity Relationships of Noncanonical Selective Agonists for α7 nAChRs. Journal of Medicinal Chemistry, 2019, 62, 10376-10390.	2.9	12
114	Quaternary and tertiary aldoxime antidotes for organophosphate exposure in a zebrafish model system. Toxicology and Applied Pharmacology, 2015, 284, 197-203.	1.3	11
115	Raman spectroscopic study on the conformation of 11 S form acetylcholinesterase fromTorpedo californica. FEBS Letters, 1987, 219, 202-206.	1.3	9
116	Lessons from nature: Structural studies and drug design driven by a homologous surrogate from invertebrates, AChBP. Neuropharmacology, 2020, 179, 108108.	2.0	9
117	Subunit interface selective toxins as probes of nicotinic acetylcholine receptor structure. Pflugers Archiv European Journal of Physiology, 2000, 440, R115-R117.	1.3	8
118	Application of Recombinant DNA Methods for Production of Cholinesterases as Organophosphate Antidotes and Detectors. Arhiv Za Higijenu Rada I Toksikologiju, 2007, 58, 339-345.	0.4	8
119	Processing of Cholinesterase-like α/β-Hydrolase Fold Proteins: Alterations Associated with Congenital Disorders. Protein and Peptide Letters, 2012, 19, 173-179.	0.4	8
120	Counteracting tabun inhibition by reactivation by pyridinium aldoximes that interact with active center gorge mutants of acetylcholinesterase. Toxicology and Applied Pharmacology, 2019, 372, 40-46.	1.3	8
121	Covalent inhibition of hAChE by organophosphates causes homodimer dissociation through long-range allosteric effects. Journal of Biological Chemistry, 2021, 297, 101007.	1.6	8
122	SPINAL NICOTINIC RECEPTOR ACTIVITY IN A GENETIC MODEL OF HYPERTENSION. Clinical and Experimental Hypertension, 2001, 23, 555-568.	0.5	7
123	Cholinesterase confabs and cousins: Approaching forty years. Chemico-Biological Interactions, 2013, 203, 10-13.	1.7	7
124	Design and Synthesis of Nicotinic Acetylcholine Receptor Antagonists and their Effect on Cognitive Impairment. Chemical Biology and Drug Design, 2016, 87, 39-56.	1.5	7
125	Butyrylcholinesterase identification in a phenylvalerate esterase-enriched fraction sensitive to low mipafox concentrations in chicken brain. Archives of Toxicology, 2017, 91, 909-919.	1.9	7
126	STRUCTURE AND FUNCTION OF THE WAGLERINS, PEPTIDE TOXINS FROM THE VENOM OF WAGLER'S PIT VIPER,TROPIDOLAEMUS WAGLERI. Toxin Reviews, 2002, 21, 273-292.	1.5	6

#	Article	IF	CITATIONS
127	Investigating the structural influence of surface mutations on acetylcholinesterase inhibition by organophosphorus compounds and oxime reactivation. Chemico-Biological Interactions, 2010, 187, 238-240.	1.7	5
128	Ligand design for human acetylcholinesterase and nicotinic acetylcholine receptors, extending beyond the conventional and canonical. Journal of Neurochemistry, 2021, 158, 1217-1222.	2.1	5
129	Interactions of Nereistoxin and Its Analogs with Vertebrate Nicotinic Acetylcholine Receptors and Molluscan ACh Binding Proteins. Marine Drugs, 2022, 20, 49.	2.2	5
130	Epitope Mapping of Form-Specific and Nonspecific Antibodies to Acetylcholinesterase. Journal of Neurochemistry, 1993, 61, 2124-2132.	2.1	4
131	Contemporary paradigms for cholinergic ligand design guided by biological structure. Bioorganic and Medicinal Chemistry Letters, 2004, 14, 1875-1877.	1.0	2
132	Enhancing Target Tissue Levels and Diminishing Plasma Clearance of Ionizing Zwitterionic Antidotes in Organophosphate Exposures. Journal of Pharmacology and Experimental Therapeutics, 2021, 378, 315-321.	1.3	2
133	Cholinergic Capsules and Academic Admonitions. Annual Review of Pharmacology and Toxicology, 2021, 61, 25-46.	4.2	2
134	Metrifonate. Drugs and Aging, 1997, 11, 497.	1.3	1
135	From Split to Sibenik: The tortuous pathway in the cholinesterase field. Chemico-Biological Interactions, 2010, 187, 3-9.	1.7	1
136	Defining the determinants of nicotine selectivity. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107, 13195-13196.	3.3	1
137	Adhesion, Catalysis and Signaling: A Commonality of Association Followed by Distinctive Events Driving Function. Structure, 2019, 27, 1055-1056.	1.6	0
138	Structural dynamics of the acetylcholine binding protein analyzed by timeâ€resolved fluorescence anisotropy decay. FASEB Journal, 2006, 20, A244.	0.2	0
139	Structure – activity relationships and determinants of selectivity for congeners of the selective α7 partial agonist 3â€(2,4â€dimethoxybenzylidene)â€anabaseine (DMXBA or GTSâ€21) with the ACh binding proteir (AChBPs). FASEB Journal, 2006, 20, A244.	າ£0.2	0
140	Structural insights into competitive and nonâ€competitive nicotinic antagonists. FASEB Journal, 2006, 20, .	0.2	0
141	Freezeâ€Frame Clickâ€Chemistry Synthesis on a Soluble Alphaâ€7 Nicotinic Acetylcholine Receptor (nAChR) Ligand Binding Domain. FASEB Journal, 2008, 22, 1127.5.	0.2	0
142	In vitro screening of acetylcholinesterase reactivating potency and oxime assisted organophosphate hydrolysis for a library of novel oxime reactivators synthesized by "click hemistry―. FASEB Journal, 2008, 22, 717.7.	0.2	0
143	Investigating naturally occurring variations in the Acetylcholinesterase gene of a human population. FASEB Journal, 2008, 22, 1134.2.	0.2	0
144	Small angle xâ€ray scattering and analytical ultracentrifugation characterization of the extracellular domain of αâ€neurexin, alone and in complex with neuroliginâ€1. FASEB Journal, 2008, 22, 823.19.	0.2	0

#	Article	IF	CITATIONS
145	Alphaâ€7 Nicotinic Acetylcholine Receptor (nAChR) Characteristics on the Acetylcholine Binding Protein. FASEB Journal, 2009, 23, 942.4.	0.2	0
146	A structureâ€guided design strategy to develop ligands with subtype selectivity for human nicotinic acetylcholine receptors. FASEB Journal, 2009, 23, 756.14.	0.2	0
147	Ligand design for human nicotinic acetylcholine receptors using in situ freezeâ€frame click chemistry. FASEB Journal, 2010, 24, 579.2.	0.2	Ο
148	Validating the Acetylcholine Binding Protein's Conversion Potential to a Human Nicotinic Acetylcholine Receptor FASEB Journal, 2010, 24, 579.1.	0.2	0
149	Design of Novel Oxime Reactivators and Direct Characterization of Their Interaction With OPâ€ChE Conjugates. FASEB Journal, 2010, 24, 763.10.	0.2	0
150	Crystallographic comparison of nicotinic ligands in complex with the acetylcholine binding protein. FASEB Journal, 2010, 24, 579.4.	0.2	0
151	Biochemical characterization of the cellular biosynthesis and trafficking of Caspr2. FASEB Journal, 2010, 24, 839.1.	0.2	0
152	The role of the β9–10 linker in nicotinic acetylcholine receptor selectivity. FASEB Journal, 2012, 26, lb579.	0.2	0
153	Generation of selective ligands for nicotinic acetylcholine receptors. FASEB Journal, 2012, 26, .	0.2	0
154	Molecular Determinants of Reactivation Potency for Novel, Efficacious, Centrally Active Oxime Reactivators of Phosphylated Acetylcholinesterase. FASEB Journal, 2012, 26, 851.5.	0.2	0
155	Structureâ€Activity Considerations for Heteroaromatic nortropeines and Nâ€methyltropeines with Nicotinic Acetylcholine Receptor (nAChR) Subtypes and a Serotonin Receptor (5HT3A). FASEB Journal, 2013, 27, .	0.2	0
156	Structureâ€activity Relationships of Bicyclic Amine Heterocycles with α7 Nicotinic Acetylcholine Receptors (nAChR) and Related Ligandâ€gated Ion Channels. FASEB Journal, 2013, 27, lb554.	0.2	0
157	Derivatives of 1,2,3â€ŧriazole lead found to be selective and potent agonists at the α7 nicotinic acetylcholine receptor (1059.8). FASEB Journal, 2014, 28, 1059.8.	0.2	0
158	The Effect of Organophosphate (OP)â€Induced Structural Changes in Acetylcholinesterase on Kinetics of OP Inhibition and Oxime Reactivation. FASEB Journal, 2018, 32, 526.40.	0.2	0
159	Impact of Organophosphate (OP) Conjugation on Structure and Dynamics of Human Acetylcholinesterase. FASEB Journal, 2018, 32, 527.8.	0.2	0
160	Dynamics of Organophosphateâ€Induced Structural Changes in Acetylcholinesterase Revealed by Timeâ€Resolved Smallâ€Angle Xâ€Ray Scattering and Inelastic Neutron Scattering. FASEB Journal, 2018, 32, 527.7.	0.2	0
161	Bloodâ€brain Barrier Penetrant and Orally Bioavailable Antidotes to Organophosphate Poisoning. FASEB Journal, 2018, 32, 688.4.	0.2	0
162	Structureâ€Activity Relationships of Selective Pyrimidine Agonists on α7â€nAChRs. FASEB Journal, 2019, 33, 667.9.	0.2	0

#	Article	IF	CITATIONS
163	Drysdalin, a snake neurotoxin with higher affinity for soluble acetylcholine binding protein from Aplysia californica than from Lymnaea stagnalis. Toxicon, 2020, 187, 86-92.	0.8	Ο