Simon Sretenovic

List of Publications by Year

 in descending orderSource: https:/|exaly.com/author-pdf/3870606/publications.pdf
Version: 2024-02-01

1 The emerging and uncultivated potential of CRISPR technology in plant science. Nature Plants, 2019, 5, 778-794.

Precise plant genome editing using base editors and prime editors. Nature Plants, 2021, 7, 1166-1187.
4.7

Application of CRISPR-Cas12a temperature sensitivity for improved genome editing in rice, maize, and Arabidopsis. BMC Biology, 2019, 17, 9.

Improving Plant Genome Editing with High-Fidelity xCas9 and Non-canonical PAM-Targeting Cas9-NG.
Molecular Plant, 2019, 12, 1027-1036.

Plant Prime Editors Enable Precise Gene Editing inÂRice Cells. Molecular Plant, 2020, 13, 667-670.
3.9
4.7

140
6 PAM-less plant genome editing using a CRISPRâ $€^{\prime \prime}$ SpRY toolbox. Nature Plants, 2021, 7, 25-33.

Single transcript unit <scp>CRISPR</scp> 2.0 systems for robust Cas9 and Cas12a mediated plant
genome editing. Plant Biotechnology Journal, 2019, 17, 1431-1445.

CRISPRâ€"Act3.0 for highly efficient multiplexed gene activation in plants. Nature Plants, 2021, 7, 942-953.
4.7

99

9 Boosting plant genome editing with a versatile CRISPR-Combo system. Nature Plants, 2022, 8, 513-525.
4.7

60

10 Improved plant cytosine base editors with high editing activity, purity, and specificity. Plant
Biotechnology Journal, 2021, 19, 2052-2068.

CRISPR/dCas-mediated transcriptional and epigenetic regulation in plants. Current Opinion in Plant
Biology, 2021,60, 101980 .

Highly efficient Câ€toâ€d and Aâ€をоâ€€ base editing in a <i>Populus</i> hybrid. Plant Biotechnology Journal, 2021, 19, 1086-1088.

13 Exploring C-To-G Base Editing in Rice, Tomato, and Poplar. Frontiers in Genome Editing, 2021, 3, 756766.
2.7

32

Expanding plant genome-editing scope by an engineered iSpyMacCas9 system that targets A-rich PAM sequences. Plant Communications, 2021, 2, 100101.

Viscoelastic Properties of Levan-DNA Mixtures Important in Microbial Biofilm Formation as
Determined by Micro- and Macrorheology. Biophysical Journal, 2015, 108, 758-765.

Genome- and transcriptome-wide off-target analyses of an improved cytosine base editor. Plant
Physiology, 2021, 187, 73-87.

Genomeâ€wide analyses of PAMâ€relaxed Cas9 genome editors reveal substantial offâ€target effects by
ABE8e in rice. Plant Biotechnology Journal, 2022, 20, 1670-1682.
4.1

23

An early mechanical coupling of planktonic bacteria in dilute suspensions. Nature Communications, 2017, 8, 213.

23	Evaluating SAXS Results on Aqueous Solutions of Various Bacterial Levan utilizing the String-of-Beads Model. Acta Chimica Slovenica, 2015, 62, 509-517.	0.2
24	Rapid Vector Construction and Assessment of BE3 and Target-AID C to T Base Editing Systems in Rice Protoplasts. Methods in Molecular Biology, 2021, 2238, 95-113.	0.4

Expanding the targeting scope of Foklâ€dCas nuclease systems with SpRY and Mb2Cas12a. Biotechnology

