Simon Sretenovic

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3870606/publications.pdf Version: 2024-02-01

SIMON SPETENOVIC

#	Article	IF	CITATIONS
1	The emerging and uncultivated potential of CRISPR technology in plant science. Nature Plants, 2019, 5, 778-794.	4.7	294
2	Precise plant genome editing using base editors and prime editors. Nature Plants, 2021, 7, 1166-1187.	4.7	172
3	Application of CRISPR-Cas12a temperature sensitivity for improved genome editing in rice, maize, and Arabidopsis. BMC Biology, 2019, 17, 9.	1.7	172
4	Improving Plant Genome Editing with High-Fidelity xCas9 and Non-canonical PAM-Targeting Cas9-NG. Molecular Plant, 2019, 12, 1027-1036.	3.9	159
5	Plant Prime Editors Enable Precise Gene Editing inÂRice Cells. Molecular Plant, 2020, 13, 667-670.	3.9	148
6	PAM-less plant genome editing using a CRISPR–SpRY toolbox. Nature Plants, 2021, 7, 25-33.	4.7	140
7	Single transcript unit <scp>CRISPR</scp> 2.0 systems for robust Cas9 and Cas12a mediated plant genome editing. Plant Biotechnology Journal, 2019, 17, 1431-1445.	4.1	120
8	CRISPR–Act3.0 for highly efficient multiplexed gene activation in plants. Nature Plants, 2021, 7, 942-953.	4.7	99
9	Boosting plant genome editing with a versatile CRISPR-Combo system. Nature Plants, 2022, 8, 513-525.	4.7	60
10	Improved plant cytosine base editors with high editing activity, purity, and specificity. Plant Biotechnology Journal, 2021, 19, 2052-2068.	4.1	55
11	CRISPR/dCas-mediated transcriptional and epigenetic regulation in plants. Current Opinion in Plant Biology, 2021, 60, 101980.	3.5	50
12	Highly efficient Câ€ŧoâ€T and Aâ€ŧoâ€G base editing in a <i>Populus</i> hybrid. Plant Biotechnology Journal, 2021, 19, 1086-1088.	4.1	32
13	Exploring C-To-G Base Editing in Rice, Tomato, and Poplar. Frontiers in Genome Editing, 2021, 3, 756766.	2.7	32
14	Expanding plant genome-editing scope by an engineered iSpyMacCas9 system that targets A-rich PAM sequences. Plant Communications, 2021, 2, 100101.	3.6	31
15	Viscoelastic Properties of Levan-DNA Mixtures Important in Microbial Biofilm Formation as Determined by Micro- and Macrorheology. Biophysical Journal, 2015, 108, 758-765.	0.2	26
16	Genome- and transcriptome-wide off-target analyses of an improved cytosine base editor. Plant Physiology, 2021, 187, 73-87.	2.3	25
17	Genomeâ€wide analyses of PAMâ€relaxed Cas9 genome editors reveal substantial offâ€target effects by ABE8e in rice. Plant Biotechnology Journal, 2022, 20, 1670-1682.	4.1	23
18	Structure and Dynamics of a Model Polymer Mixture Mimicking a Levan-Based Bacterial Biofilm of <i>Bacillus subtilis</i> . Langmuir, 2016, 32, 8182-8194.	1.6	22

SIMON SRETENOVIC

#	Article	IF	CITATIONS
19	CRISPRâ€BETS: a baseâ€editing design tool for generating stop codons. Plant Biotechnology Journal, 2022, 20, 499-510.	4.1	21
20	An early mechanical coupling of planktonic bacteria in dilute suspensions. Nature Communications, 2017, 8, 213.	5.8	20
21	CRISPR-Cas nucleases and base editors for plant genome editing. ABIOTECH, 2020, 1, 74-87.	1.8	16
22	Plant prime editing goes prime. Nature Plants, 2022, 8, 20-22.	4.7	13
23	Evaluating SAXS Results on Aqueous Solutions of Various Bacterial Levan utilizing the String-of-Beads Model. Acta Chimica Slovenica, 2015, 62, 509-517.	0.2	6
24	Rapid Vector Construction and Assessment of BE3 and Target-AID C to T Base Editing Systems in Rice Protoplasts. Methods in Molecular Biology, 2021, 2238, 95-113.	0.4	5
25	Expanding the targeting scope of Foklâ€dCas nuclease systems with SpRY and Mb2Cas12a. Biotechnology Journal, 2022, 17, e2100571.	1.8	3
26	Protocols for evaluating local bacterial viscoelastic environment and mechanical coupling in dilute bacterial suspensions. Protocol Exchange, 0, , .	0.3	1
27	Assembly and Assessment of Prime Editing Systems for Precise Genome Editing in Plants. Springer Protocols, 2021, , 83-101.	0.1	0