Andrea Magrì

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3870481/publications.pdf Version: 2024-02-01

ΔΝΟΦΕΛ ΜΛΟΦΑ-

#	Article	IF	CITATIONS
1	Voltage Dependent Anion Channel 3 (VDAC3) protects mitochondria from oxidative stress. Redox Biology, 2022, 51, 102264.	9.0	22
2	α-Synuclein A53T Promotes Mitochondrial Proton Gradient Dissipation and Depletion of the Organelle Respiratory Reserve in a Neuroblastoma Cell Line. Life, 2022, 12, 894.	2.4	4
3	Voltage-Dependent Anion Selective Channel Isoforms in Yeast: Expression, Structure, and Functions. Frontiers in Physiology, 2021, 12, 675708.	2.8	13
4	Alpha-Synuclein and Mitochondrial Dysfunction in Parkinson's Disease: The Emerging Role of VDAC. Biomolecules, 2021, 11, 718.	4.0	29
5	Small Hexokinase 1 Peptide against Toxic SOD1 G93A Mitochondrial Accumulation in ALS Rescues the ATP-Related Respiration. Biomedicines, 2021, 9, 948.	3.2	10
6	Deletion of Voltage-Dependent Anion Channel 1 knocks mitochondria down triggering metabolic rewiring in yeast. Cellular and Molecular Life Sciences, 2020, 77, 3195-3213.	5.4	25
7	High-Resolution Respirometry Reveals MPP+ Mitochondrial Toxicity Mechanism in a Cellular Model of Parkinson's Disease. International Journal of Molecular Sciences, 2020, 21, 7809.	4.1	37
8	A lower affinity to cytosolic proteins reveals VDAC3 isoform-specific role in mitochondrial biology. Journal of General Physiology, 2020, 152, .	1.9	36
9	A VDAC1-Derived N-Terminal Peptide Inhibits Mutant SOD1-VDAC1 Interactions and Toxicity in the SOD1 Model of ALS. Frontiers in Cellular Neuroscience, 2019, 13, 346.	3.7	23
10	Recombinant yeast VDAC 2: a comparison of electrophysiological features with the native form. FEBS Open Bio, 2019, 9, 1184-1193.	2.3	8
11	Synthesis, biological evaluation and mode of action studies of novel amidinourea inhibitors of hepatitis C virus (HCV). Bioorganic and Medicinal Chemistry Letters, 2019, 29, 724-728.	2.2	3
12	yVDAC2, the second mitochondrial porin isoform of Saccharomyces cerevisiae. Biochimica Et Biophysica Acta - Bioenergetics, 2018, 1859, 270-279.	1.0	21
13	Folded Structure and Membrane Affinity of the N-Terminal Domain of the Three Human Isoforms of the Mitochondrial Voltage-Dependent Anion-Selective Channel. ACS Omega, 2018, 3, 11415-11425.	3.5	7
14	Post-translational modifications of VDAC1 and VDAC2 cysteines from rat liver mitochondria. Biochimica Et Biophysica Acta - Bioenergetics, 2018, 1859, 806-816.	1.0	32
15	VDAC1 as Pharmacological Target in Cancer and Neurodegeneration: Focus on Its Role in Apoptosis. Frontiers in Chemistry, 2018, 6, 108.	3.6	113
16	Interactions of VDAC with Proteins Involved in Neurodegenerative Aggregation: An Opportunity for Advancement on Therapeutic Molecules. Current Medicinal Chemistry, 2018, 24, 4470-4487.	2.4	53
17	VDAC3 As a Potential Marker of Mitochondrial Status Is Involved in Cancer and Pathology. Frontiers in Oncology, 2016, 6, 264.	2.8	41
18	Unexpected Modifications of Cysteines in VDAC3: Indication that VDAC3 may Signal the Mitochondrial Intermembrane Redox State. Biophysical Journal, 2016, 110, 19a.	0.5	0

Andrea Magrã¬

#	Article	IF	CITATIONS
19	Hexokinase I N-terminal based peptide prevents the VDAC1-SOD1 G93A interaction and re-establishes ALS cell viability. Scientific Reports, 2016, 6, 34802.	3.3	53
20	Overexpression of human SOD1 in VDAC1-less yeast restores mitochondrial functionality modulating beta-barrel outer membrane protein genes. Biochimica Et Biophysica Acta - Bioenergetics, 2016, 1857, 789-798.	1.0	27
21	VDAC3 as a sensor of oxidative state of the intermembrane space of mitochondria: the putative role of cysteine residue modifications. Oncotarget, 2016, 7, 2249-2268.	1.8	78
22	Recombinant Human Voltage Dependent Anion Selective Channel Isoform 3 (hVDAC3) Forms Pores with a Very Small Conductance. Cellular Physiology and Biochemistry, 2014, 34, 842-853.	1.6	60
23	Live cell interactome of the human voltage dependent anion channel 3 (VDAC3) revealed in HeLa cells by affinity purification tag technique. Molecular BioSystems, 2014, 10, 2134-2145.	2.9	28
24	Deletion of β-strands 9 and 10 converts VDAC1 voltage-dependence in an asymmetrical process. Biochimica Et Biophysica Acta - Bioenergetics, 2013, 1827, 793-805.	1.0	32
25	<scp>mTOR</scp> regulates tau phosphorylation and degradation: implications for Alzheimer's disease and other tauopathies. Aging Cell, 2013, 12, 370-380.	6.7	309
26	Naturally Secreted Amyloid-β Increases Mammalian Target of Rapamycin (mTOR) Activity via a PRAS40-mediated Mechanism. Journal of Biological Chemistry, 2011, 286, 8924-8932.	3.4	152
27	Age-dependent changes in TDP-43 levels in a mouse model of Alzheimer disease are linked to AÎ ² oligomers accumulation. Molecular Neurodegeneration, 2010, 5, 51.	10.8	30