Didier D Cataldo

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3870264/publications.pdf

Version: 2024-02-01

96 papers 6,200 citations

43 h-index

61857

74018 75 g-index

96 all docs 96
docs citations

96 times ranked 9671 citing authors

#	Article	IF	CITATIONS
1	How to Choose the Right Inhaler Using a Patient-Centric Approach?. Advances in Therapy, 2022, 39, 1149-1163.	1.3	8
2	Local nebulization of $1\hat{1}_{\pm},25$ (OH)2D3 attenuates LPS-induced acute lung inflammation. Respiratory Research, 2022, 23, 76.	1.4	8
3	Ly6C ^{hi} monocytes balance regulatory and cytotoxic CD4 T cell responses to control virus-induced immunopathology. Science Immunology, 2022, 7, .	5.6	7
4	Severe asthma: oral corticosteroid alternatives and the need for optimal referral pathways. Journal of Asthma, 2021, 58, 448-458.	0.9	30
5	Asthma-related inflammation promotes lung metastasis of breast cancer cells through CCL11–CCR3 pathway. Respiratory Research, 2021, 22, 61.	1.4	13
6	ADAM28: Another ambivalent protease in cancer. Cancer Letters, 2020, 494, 18-26.	3.2	10
7	The Budesonide-Hydroxypropyl-Î ² -Cyclodextrin Complex Attenuates ROS Generation, IL-8 Release and Cell Death Induced by Oxidant and Inflammatory Stress. Study on A549 and A-THP-1 Cells. Molecules, 2020, 25, 4882.	1.7	5
8	Neutrophil extracellular traps infiltrate the lung airway, interstitial, and vascular compartments in severe COVID-19. Journal of Experimental Medicine, 2020, 217, .	4.2	274
9	Maternal asthma is associated with persistent changes in allergic offspring antibody glycosylation. Clinical and Experimental Allergy, 2020, 50, 520-531.	1.4	9
10	Preclinical evaluation of topically-administered PEGylated Fab' lung toxicity. International Journal of Pharmaceutics: X, 2019, 1, 100019.	1.2	2
11	Relationship between peak expiratory flow and incidence of frailty, deaths and falls among nursing home residents: Results of the SENIOR cohort. Archives of Gerontology and Geriatrics, 2019, 85, 103913.	1.4	12
12	Locally instructed CXCR4hi neutrophils trigger environment-driven allergic asthma through the release of neutrophil extracellular traps. Nature Immunology, 2019, 20, 1444-1455.	7.0	106
13	Ozone-primed neutrophils promote early steps of tumour cell metastasis to lungs by enhancing their NET production. Thorax, 2019, 74, 768-779.	2.7	20
14	ADAM10 mediates malignant pleural mesothelioma invasiveness. Oncogene, 2019, 38, 3521-3534.	2.6	19
15	Stromal integrin $\hat{l}\pm 11$ regulates PDGFR \hat{l}^2 signaling and promotes breast cancer progression. Journal of Clinical Investigation, 2019, 129, 4609-4628.	3.9	102
16	Lymph/angiogenesis contributes to sex differences in lung cancer through oestrogen receptor alpha signalling. Endocrine-Related Cancer, 2019, 26, 201-216.	1.6	13
17	Overuse of inhaled corticosteroids in COPD: five questions for withdrawal in daily practice. International Journal of COPD, 2018, Volume 13, 2089-2099.	0.9	30
18	Microenvironment-derived ADAM28 prevents cancer dissemination. Oncotarget, 2018, 9, 37185-37199.	0.8	8

#	Article	IF	CITATIONS
19	Protean proteases: at the cutting edgeÂofÂlung diseases. European Respiratory Journal, 2017, 49, 1501200.	3.1	49
20	EMT and inflammation: inseparable actors of cancer progression. Molecular Oncology, 2017, 11, 805-823.	2.1	426
21	Exposure to Bacterial CpG DNA Protects from Airway Allergic Inflammation by Expanding Regulatory Lung Interstitial Macrophages. Immunity, 2017, 46, 457-473.	6.6	171
22	Neutrophil-Derived Interleukin 16 in Premetastatic Lungs Promotes Breast Tumor Cell Seeding. Cancer Growth and Metastasis, 2017, 10, 117906441773851.	3.5	29
23	Changes in membrane biophysical properties induced by the Budesonide/Hydroxypropyl-β-cyclodextrin complex. Biochimica Et Biophysica Acta - Biomembranes, 2017, 1859, 1930-1940.	1.4	17
24	Inflammation-Generated Extracellular Matrix Fragments Drive Lung Metastasis. Cancer Growth and Metastasis, 2017, 10, 117906441774553.	3.5	13
25	A Belgian survey on the diagnosis of asthma–COPD overlap syndrome. International Journal of COPD, 2017, Volume 12, 601-613.	0.9	32
26	Dusp3 deletion in mice promotes experimental lung tumour metastasis in a macrophage dependent manner. PLoS ONE, 2017, 12, e0185786.	1.1	14
27	Stimulated release and functional activity of surface expressed metalloproteinase ADAM17 in exosomes. Biochimica Et Biophysica Acta - Molecular Cell Research, 2016, 1863, 2795-2808.	1.9	53
28	ADAMTS3 activity is mandatory for embryonic lymphangiogenesis and regulates placental angiogenesis. Angiogenesis, 2016, 19, 53-65.	3.7	77
29	[18F]FPRGD2 PET/CT imaging of integrin $\hat{l}\pm\hat{v}^2$ 3 levels in patients with locally advanced rectal carcinoma. European Journal of Nuclear Medicine and Molecular Imaging, 2016, 43, 654-662.	3.3	16
30	$<$ sup>18F-FPRGD2 PET/CT Imaging of Integrin \hat{l} + $<$ sub> v \hat{l} 2 $<$ sub> 3 in Renal Carcinomas: Correlation with Histopathology. Journal of Nuclear Medicine, 2015, 56, 361-364.	2.8	31
31	Mesenchymal Stem Cells Shed Amphiregulin at the Surface of Lung Carcinoma Cells in a Juxtacrine Manner. Neoplasia, 2015, 17, 552-563.	2.3	12
32	Interest of cyclodextrins in spray-dried microparticles formulation for sustained pulmonary delivery of budesonide. International Journal of Pharmaceutics, 2015, 495, 869-878.	2.6	41
33	New developments in inhaler devices within pharmaceutical companies: A systematic review of the impact on clinical outcomes and patient preferences. Respiratory Medicine, 2015, 109, 1430-1438.	1.3	20
34	Bone Marrow-Derived Mesenchymal Stem Cells Drive Lymphangiogenesis. PLoS ONE, 2014, 9, e106976.	1.1	30
35	EGFR Activation and Signaling in Cancer Cells Are Enhanced by the Membrane-Bound Metalloprotease MT4-MMP. Cancer Research, 2014, 74, 6758-6770.	0.4	33
36	Oxidative stress-mediated iNKT-cell activation is involved in COPD pathogenesis. Mucosal Immunology, 2014, 7, 568-578.	2.7	42

3

#	Article	IF	CITATIONS
37	PEGylation of antibody fragments greatly increases their local residence time following delivery to the respiratory tract. Journal of Controlled Release, 2014, 187, 91-100.	4.8	72
38	Myeloid hypoxia-inducible factor $1\hat{l}\pm$ prevents airway allergy in mice through macrophage-mediated immunoregulation. Mucosal Immunology, 2013, 6, 485-497.	2.7	24
39	Mithramycin Exerts an Anti-Myeloma Effect and Displays Anti-Angiogenic Effects through Up-Regulation of Anti-Angiogenic Factors. PLoS ONE, 2013, 8, e62818.	1.1	17
40	Sunitinib Inhibits Inflammatory Corneal Lymphangiogenesis. , 2013, 54, 3082.		55
41	Nebulized Anti–IL-13 Monoclonal Antibody Fab′ Fragment Reduces Allergen-Induced Asthma. American Journal of Respiratory Cell and Molecular Biology, 2012, 47, 709-717.	1.4	48
42	Control of Allergen-Induced Inflammation and Hyperresponsiveness by the Metalloproteinase ADAMTS-12. Journal of Immunology, 2012, 189, 4135-4143.	0.4	20
43	Matrix metalloproteinase-2 governs lymphatic vessel formation as an interstitial collagenase. Blood, 2012, 119, 5048-5056.	0.6	86
44	Curcumin–cyclodextrin complexes potentiate gemcitabine effects in an orthotopic mouse model of lung cancer. British Journal of Cancer, 2012, 107, 1083-1092.	2.9	70
45	Proinflammatory Cytokines Induce Bronchial Hyperplasia and Squamous Metaplasia in Smokers. American Journal of Respiratory Cell and Molecular Biology, 2012, 47, 67-79.	1.4	71
46	Resident CD11b+Ly6Câ^ Lung Dendritic Cells Are Responsible for Allergic Airway Sensitization to House Dust Mite in Mice. PLoS ONE, 2012, 7, e53242.	1.1	55
47	Potential Therapeutic Target Discovery by 2D-DIGE Proteomic Analysis in Mouse Models of Asthma. Journal of Proteome Research, 2011, 10, 4291-4301.	1.8	16
48	MicroRNAs Profiling in Murine Models of Acute and Chronic Asthma: A Relationship with mRNAs Targets. PLoS ONE, 2011, 6, e16509.	1.1	128
49	Biological aspects of angiogenesis in multiple myeloma. International Journal of Hematology, 2011, 94, 505-518.	0.7	26
50	ADAMâ€8, a metalloproteinase, drives acute allergenâ€induced airway inflammation. European Journal of Immunology, 2011, 41, 380-391.	1.6	29
51	Sirtuin 1 Promotes Th2 Responses and Airway Allergy by Repressing Peroxisome Proliferator-Activated Receptor-Î ³ Activity in Dendritic Cells. Journal of Immunology, 2011, 187, 4517-4529.	0.4	74
52	Inflammatory signatures for eosinophilic vs. neutrophilic allergic pulmonary inflammation reveal critical regulatory checkpoints. American Journal of Physiology - Lung Cellular and Molecular Physiology, 2011, 300, L679-L690.	1.3	39
53	Mouse models to unravel the role of inhaled pollutants on allergic sensitization and airway inflammation. Respiratory Research, 2010, 11 , 7 .	1.4	77
54	Matrix Metalloproteinase-19 Deficiency Promotes Tenascin-C Accumulation and Allergen-Induced Airway Inflammation. American Journal of Respiratory Cell and Molecular Biology, 2010, 43, 286-295.	1.4	29

#	Article	IF	CITATIONS
55	Interferon response factor 3 is essential for house dust mite–induced airway allergy. Journal of Allergy and Clinical Immunology, 2010, 126, 836-844.e13.	1.5	45
56	Role of A Disintegrin And Metalloprotease-12 in Neutrophil Recruitment Induced by Airway Epithelium. American Journal of Respiratory Cell and Molecular Biology, 2009, 41, 449-458.	1.4	22
57	New asthma biomarkers: lessons from murine models of acute and chronic asthma. American Journal of Physiology - Lung Cellular and Molecular Physiology, 2009, 296, L185-L197.	1.3	95
58	Mouse models of asthma: a comparison between C57BL/6 and BALB/c strains regarding bronchial responsiveness, inflammation, and cytokine production. Inflammation Research, 2009, 58, 845-854.	1.6	161
59	Biomarker discovery in asthmaâ€related inflammation and remodeling. Proteomics, 2009, 9, 2163-2170.	1.3	30
60	Matrix metalloproteinase 12 silencing: A therapeutic approach to treat pathological lung tissue remodeling?. Pulmonary Pharmacology and Therapeutics, 2009, 22, 267-278.	1.1	41
61	Comparison of Acute Inflammatory and Chronic Structural Asthma-Like Responses between C57BL/6 and BALB/c Mice. International Archives of Allergy and Immunology, 2009, 149, 195-207.	0.9	65
62	Role of ADAM and ADAMTS metalloproteinases in airway diseases. Respiratory Research, 2009, 10, 127.	1.4	43
63	Lung interstitial macrophages alter dendritic cell functions to prevent airway allergy in mice. Journal of Clinical Investigation, 2009, 119, 3723-3738.	3.9	332
64	The metalloproteinase ADAMâ€12 regulates bronchial epithelial cell proliferation and apoptosis. Cell Proliferation, 2008, 41, 988-1001.	2.4	29
65	A novel formulation of inhaled doxycycline reduces allergen-induced inflammation, hyperresponsiveness and remodeling by matrix metalloproteinases and cytokines modulation in a mouse model of asthma. Biochemical Pharmacology, 2008, 75, 514-526.	2.0	57
66	Emerging roles of ADAM and ADAMTS metalloproteinases in cancer. Biochimie, 2008, 90, 369-379.	1.3	234
67	ADAMTS-1 Metalloproteinase Promotes Tumor Development through the Induction of a Stromal Reaction <i>In vivo</i> . Cancer Research, 2008, 68, 9541-9550.	0.4	65
68	Evaluation of oral corticosteroids and phosphodiesterase-4 inhibitor on the acute inflammation induced by inhaled lipopolysaccharide in human. Pulmonary Pharmacology and Therapeutics, 2007, 20, 676-683.	1.1	27
69	Elevated MMP-12 protein levels in induced sputum from patients with COPD. Thorax, 2006, 61, 196-201.	2.7	193
70	Expression of ADAMs and Their Inhibitors in Sputum from Patients with Asthma. Molecular Medicine, 2006, 12, 171-179.	1.9	47
71	Expression of a disintegrin and metalloprotease (ADAM and ADAMTS) enzymes in human non-small-cell lung carcinomas (NSCLC). British Journal of Cancer, 2006, 94, 724-730.	2.9	82
72	Matrix metalloproteinases (MMPs) and tissue inhibitors of MMPs in the respiratory tract: Potential implications in asthma and other lung diseases. European Journal of Pharmacology, 2006, 533, 133-144.	1.7	254

#	Article	IF	CITATIONS
73	Earlier Onset of Tumoral Angiogenesis in Matrix Metalloproteinase-19–Deficient Mice. Cancer Research, 2006, 66, 5234-5241.	0.4	65
74	Automated method for the determination of a new matrix metalloproteinase inhibitor in ovine plasma and serum by coupling of restricted access material for on-line sample clean-up to liquid chromatography. Journal of Chromatography B: Analytical Technologies in the Biomedical and Life Sciences, 2005, 817, 109-117.	1.2	11
75	Repeated cadmium nebulizations induce pulmonary MMP-2 and MMP-9 production and enphysema in rats. Toxicology, 2005, 211, 36-48.	2.0	60
76	Matrix Metalloproteinase-8 Deficiency Promotes Granulocytic Allergen-Induced Airway Inflammation. Journal of Immunology, 2005, 175, 2589-2597.	0.4	132
77	Matrix Metalloproteinase-12 and Cathepsin D Expression in Pulmonary Macrophages and Dendritic Cells of Cigarette Smoke-Exposed Mice. International Archives of Allergy and Immunology, 2005, 138, 169-179.	0.9	88
78	Selective Blockade of NF-κB Activity in Airway Immune Cells Inhibits the Effector Phase of Experimental Asthma. Journal of Immunology, 2004, 173, 5766-5775.	0.4	139
79	Matrix metalloproteinases and tissue inhibitors of matrix metalloproteinases mRNA transcripts in the bronchial secretions of asthmatics. Laboratory Investigation, 2004, 84, 418-424.	1.7	66
80	Cyclodextrins as a potential carrier in drug nebulization. Journal of Controlled Release, 2004, 96, 403-410.	4.8	70
81	Increased IL-6 and TGF- \hat{l}^21 concentrations in bronchoalveolar lavage fluid associated with thoracic radiotherapy. International Journal of Radiation Oncology Biology Physics, 2004, 58, 758-767.	0.4	84
82	Evaluation of Pleural Disease With 18-Fluorodeoxyglucose Positron Emission Tomography Imaging. Chest, 2004, 125, 489-493.	0.4	154
83	Matrix Metalloproteinase-9-Mediated Dendritic Cell Recruitment into the Airways Is a Critical Step in a Mouse Model of Asthma. Journal of Immunology, 2003, 171, 1016-1022.	0.4	148
84	Whole-body tumor imaging using PET and 2-18F-fluoro-L-tyrosine: preliminary evaluation and comparison with 18F-FDG. Journal of Nuclear Medicine, 2003, 44, 533-9.	2.8	27
85	Evidence of mast-cell activation in a subset of patients with eosinophilic chronic obstructive pulmonary disease. European Respiratory Journal, 2002, 20, 325-331.	3.1	44
86	Matrix Metalloproteinase-9, but not Tissue Inhibitor of Matrix Metalloproteinase-1, Increases in the Sputum from Allergic Asthmatic Patients After Allergen Challenge. Chest, 2002, 122, 1553-1559.	0.4	102
87	Matrix Metalloproteinase-9 Deficiency Impairs Cellular Infiltration and Bronchial Hyperresponsiveness during Allergen-Induced Airway Inflammation. American Journal of Pathology, 2002, 161, 491-498.	1.9	160
88	Multiple pulmonary arteriovenous malformations. Lancet, The, 2002, 359, 1998.	6.3	4
89	Sputum eosinophil count in a large population of patients with mild to moderate steroid-naive asthma: distribution and relationship with methacholine bronchial hyperresponsiveness. Allergy: European Journal of Allergy and Clinical Immunology, 2002, 57, 907-912.	2.7	78
90	Matrix metalloproteinases and TIMP-1 production by peripheral blood granulocytes from COPD patients and asthmatics. Allergy: European Journal of Allergy and Clinical Immunology, 2001, 56, 145-151.	2.7	57

#	Article	IF	CITATION
91	Induced Sputum. Chest, 2001, 120, 1815-1821.	0.4	33
92	Pathophysiology of a Fall in Arterial Oxygen Saturation During Sputum Induction. Chest, 2000, 117, 1818.	0.4	2
93	Airway mast-cell activation in asthmatics is associated with selective sputum eosinophilia. Allergy: European Journal of Allergy and Clinical Immunology, 1999, 54, 1188-1193.	2.7	17
94	Endothelial cell intracellular Ca2+ concentration is increased upon breast tumor cell contact and mediates tumor cell transendothelial migration. Clinical and Experimental Metastasis, 1997, 16, 21-29.	1.7	36
95	Heparin-binding domain, type 1 and type 2 repeats of thrombospondin mediate its interaction with human breast cancer cells., 1996, 62, 431-442.		18
96	Plasma membrane-dependent activation of gelatinase A in human vascular endothelial cells. Journal of Cellular Physiology, 1995, 165, 475-483.	2.0	65