List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3869538/publications.pdf

Version: 2024-02-01



| #  | Article                                                                                                                                                                                                                                          | IF  | CITATIONS |
|----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 1  | Comparisons of photosynthetic and anatomical traits between wild and domesticated cotton. Journal of Experimental Botany, 2022, 73, 873-885.                                                                                                     | 2.4 | 15        |
| 2  | An elliptical blade is not a true ellipse, but a superellipse–Evidence from two Michelia species. Journal of Forestry Research, 2022, 33, 1341-1348.                                                                                             | 1.7 | 6         |
| 3  | Sex-specific interactions shape root phenolics and rhizosphere microbial communities in Populus cathayana. Forest Ecology and Management, 2022, 504, 119857.                                                                                     | 1.4 | 16        |
| 4  | Long-term dynamics of soil, tree stem and ecosystem methane fluxes in a riparian forest. Science of the Total Environment, 2022, 809, 151723.                                                                                                    | 3.9 | 10        |
| 5  | Small and slow is safe: On the drought tolerance of tropical tree species. Global Change Biology, 2022, 28, 2622-2638.                                                                                                                           | 4.2 | 35        |
| 6  | Impact of heat stress of varying severity on papaya (Carica papaya) leaves: Major changes in stress<br>volatile signatures, but surprisingly small enhancements of total emissions. Environmental and<br>Experimental Botany, 2022, 195, 104777. | 2.0 | 9         |
| 7  | Diminishing returns among lamina fresh and dry mass, surface area, and petiole fresh mass among nine<br>Lauraceae species. American Journal of Botany, 2022, 109, 377-392.                                                                       | 0.8 | 14        |
| 8  | Climatic and soil factors explain the two-dimensional spectrum of global plant trait variation. Nature<br>Ecology and Evolution, 2022, 6, 36-50.                                                                                                 | 3.4 | 89        |
| 9  | Structure and function of the soil microbiome underlying N2O emissions from global wetlands.<br>Nature Communications, 2022, 13, 1430.                                                                                                           | 5.8 | 72        |
| 10 | Cell-level anatomy explains leaf age-dependent declines in mesophyll conductance and photosynthetic<br>capacity in the evergreen Mediterranean oak <i>Quercus ilex</i> subsp. <i>rotundifolia</i> . Tree<br>Physiology, 2022, , .                | 1.4 | 2         |
| 11 | Scaling relationships of leaf vein and areole traits versus leaf size for nine Magnoliaceae species<br>differing in venation density. American Journal of Botany, 2022, 109, 899-909.                                                            | 0.8 | 16        |
| 12 | Improved plant heat shock resistance is introduced differently by heat and insect infestation: the role of volatile emission traits. Oecologia, 2022, 199, 53-68.                                                                                | 0.9 | 1         |
| 13 | Highly Diverse Phytophthora infestans Populations Infecting Potato Crops in Pskov Region,<br>North-West Russia. Journal of Fungi (Basel, Switzerland), 2022, 8, 472.                                                                             | 1.5 | 4         |
| 14 | Desiccation–rehydration measurements in bryophytes: current status and future insights. Journal of<br>Experimental Botany, 2022, 73, 4338-4361.                                                                                                  | 2.4 | 5         |
| 15 | Particulate matter and polycyclic aromatic hydrocarbon uptake in relation to leaf surface functional traits in Mediterranean evergreens: Potentials for air phytoremediation. Journal of Hazardous Materials, 2022, 435, 129029.                 | 6.5 | 12        |
| 16 | Priority for climate adaptation measures in European crop production systems. European Journal of<br>Agronomy, 2022, 138, 126516.                                                                                                                | 1.9 | 23        |
| 17 | Acute methyl jasmonate exposure results in major bursts of stress volatiles, but in surprisingly low<br>impact on specialized volatile emissions in the fragrant grass Cymbopogon flexuosus. Journal of Plant<br>Physiology, 2022, 274, 153721.  | 1.6 | 5         |
| 18 | Negative relationship between woody species density and size of urban green spaces in seven European cities. Urban Forestry and Urban Greening, 2022, 74, 127650.                                                                                | 2.3 | 9         |

| #  | Article                                                                                                                                                                                                                                                                           | IF  | CITATIONS |
|----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 19 | Global relationships in tree functional traits. Nature Communications, 2022, 13, .                                                                                                                                                                                                | 5.8 | 29        |
| 20 | High exposure of global tree diversity to human pressure. Proceedings of the National Academy of<br>Sciences of the United States of America, 2022, 119, .                                                                                                                        | 3.3 | 18        |
| 21 | Heat priming improved heat tolerance of photosynthesis, enhanced terpenoid and benzenoid emission<br>and phenolics accumulation in <scp><i>Achillea millefolium</i></scp> . Plant, Cell and Environment,<br>2021, 44, 2365-2385.                                                  | 2.8 | 22        |
| 22 | Global patterns of biomass allocation in woody species with different tolerances of shade and drought: evidence for multiple strategies. New Phytologist, 2021, 229, 308-322.                                                                                                     | 3.5 | 43        |
| 23 | Elevated temperature and CO2 interactively modulate sexual competition and ecophysiological responses of dioecious Populus cathayana. Forest Ecology and Management, 2021, 481, 118747.                                                                                           | 1.4 | 22        |
| 24 | Different functional characteristics can explain different dimensions of plant invasion success.<br>Journal of Ecology, 2021, 109, 1524-1536.                                                                                                                                     | 1.9 | 14        |
| 25 | Influence of leaf shape on the scaling of leaf surface area and length in bamboo plants. Trees -<br>Structure and Function, 2021, 35, 709-715.                                                                                                                                    | 0.9 | 16        |
| 26 | Global macroecology of nitrogenâ€fixing plants. Global Ecology and Biogeography, 2021, 30, 514-526.                                                                                                                                                                               | 2.7 | 16        |
| 27 | Anatomical variation of mesophyll conductance due to salt stress in <i>Populus cathayana</i> females and males growing under different inorganic nitrogen sources. Tree Physiology, 2021, 41, 1462-1478.                                                                          | 1.4 | 21        |
| 28 | Climatic and evolutionary contexts are required to infer plant life history strategies from functional traits at a global scale. Ecology Letters, 2021, 24, 970-983.                                                                                                              | 3.0 | 19        |
| 29 | Plant Age Has a Minor Effect on Non-Destructive Leaf Area Calculations in Moso Bamboo<br>(Phyllostachys edulis). Symmetry, 2021, 13, 369.                                                                                                                                         | 1.1 | 16        |
| 30 | A meta-analysis of mesophyll conductance to CO2 in relation to major abiotic stresses in poplar species. Journal of Experimental Botany, 2021, 72, 4384-4400.                                                                                                                     | 2.4 | 9         |
| 31 | Different sets of traits explain abundance and distribution patterns of European plants at different spatial scales. Journal of Vegetation Science, 2021, 32, e13016.                                                                                                             | 1.1 | 15        |
| 32 | Temperature and pH define the realised niche space of arbuscular mycorrhizal fungi. New Phytologist, 2021, 231, 763-776.                                                                                                                                                          | 3.5 | 126       |
| 33 | A reporting format for leaf-level gas exchange data and metadata. Ecological Informatics, 2021, 61, 101232.                                                                                                                                                                       | 2.3 | 22        |
| 34 | Vulnerability and responses to bark beetle and associated fungal symbiont attacks in conifers. Tree<br>Physiology, 2021, 41, 1103-1108.                                                                                                                                           | 1.4 | 3         |
| 35 | Wounding-Induced VOC Emissions in Five Tropical Agricultural Species. Molecules, 2021, 26, 2602.                                                                                                                                                                                  | 1.7 | 6         |
| 36 | Powdery mildew ( <i>Erysiphe cruciferarum</i> ) evaluation on oilseed rape and alternative<br>cruciferous oilseed crops in the northern Baltic region in unusually warm growing seasons. Acta<br>Agriculturae Scandinavica - Section B Soil and Plant Science, 2021, 71, 443-452. | 0.3 | 2         |

| #  | Article                                                                                                                                                                                                                                        | IF  | CITATIONS |
|----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 37 | Dose-dependent methyl jasmonate effects on photosynthetic traits and volatile emissions: biphasic kinetics and stomatal regulation. Plant Signaling and Behavior, 2021, 16, 1917169.                                                           | 1.2 | 10        |
| 38 | Heat stress resistance drives coordination of emissions of suites of volatiles after severe heat stress and during recovery in five tropical crops. Environmental and Experimental Botany, 2021, 184, 104375.                                  | 2.0 | 11        |
| 39 | Nature-based solutions as tools for air phytoremediation: A review of the current knowledge and gaps. Environmental Pollution, 2021, 277, 116817.                                                                                              | 3.7 | 19        |
| 40 | Dimensions of invasiveness: Links between local abundance, geographic range size, and habitat breadth<br>in Europe's alien and native floras. Proceedings of the National Academy of Sciences of the United<br>States of America, 2021, 118, . | 3.3 | 47        |
| 41 | Combined Acute Ozone and Water Stress Alters the Quantitative Relationships between O3 Uptake,<br>Photosynthetic Characteristics and Volatile Emissions in Brassica nigra. Molecules, 2021, 26, 3114.                                          | 1.7 | 4         |
| 42 | Functional biogeography of Neotropical moist forests: Trait–climate relationships and assembly patterns of tree communities. Global Ecology and Biogeography, 2021, 30, 1430-1446.                                                             | 2.7 | 18        |
| 43 | Root traits explain plant species distributions along climatic gradients yet challenge the nature of ecological trade-offs. Nature Ecology and Evolution, 2021, 5, 1123-1134.                                                                  | 3.4 | 62        |
| 44 | Relationships Between Leaf Carbon and Macronutrients Across Woody Species and Forest Ecosystems<br>Highlight How Carbon Is Allocated to Leaf Structural Function. Frontiers in Plant Science, 2021, 12,<br>674932.                             | 1.7 | 22        |
| 45 | Research agenda on biodiversity and ecosystem functions and services in European cities. Basic and Applied Ecology, 2021, 53, 124-133.                                                                                                         | 1.2 | 18        |
| 46 | Induced Volatile Emissions, Photosynthetic Characteristics, and Pigment Content in Juglans regia<br>Leaves Infected with the Erineum-Forming Mite Aceria erinea. Forests, 2021, 12, 920.                                                       | 0.9 | 4         |
| 47 | Content of Carotenoids, Violaxanthin and Neoxanthin in Leaves of Triticum aestivum Exposed to Persistent Environmental Pollutants. Molecules, 2021, 26, 4448.                                                                                  | 1.7 | 1         |
| 48 | Forest canopy mitigates soil N2O emission during hot moments. Npj Climate and Atmospheric Science, 2021, 4, .                                                                                                                                  | 2.6 | 5         |
| 49 | Analyzing the causes of method-to-method variability among Rubisco kinetic traits: from the first to the current measurements. Journal of Experimental Botany, 2021, 72, 7846-7862.                                                            | 2.4 | 8         |
| 50 | <scp>CO<sub>2</sub></scp> â€responsiveness of leaf isoprene emission: Why do speciesÂdiffer?. Plant,<br>Cell and Environment, 2021, 44, 3049-3063.                                                                                             | 2.8 | 8         |
| 51 | A dataset of the flowering plants (Angiospermae) in urban green areas in five European cities. Data in<br>Brief, 2021, 37, 107243.                                                                                                             | 0.5 | 9         |
| 52 | The importance of sesquiterpene oxidation products for secondary organic aerosol formation in a springtime hemiboreal forest. Atmospheric Chemistry and Physics, 2021, 21, 11781-11800.                                                        | 1.9 | 16        |
| 53 | Spatial distribution characteristics of stomata at the areole level in <i>Michelia cavaleriei</i> var.<br><i>platypetala</i> (Magnoliaceae). Annals of Botany, 2021, 128, 875-886.                                                             | 1.4 | 10        |
| 54 | Phloem-feeding insect infestation antagonizes volatile organic compound emissions and enhances<br>heat stress recovery of photosynthesis in Origanum vulgare. Environmental and Experimental Botany,<br>2021, 189, 104551.                     | 2.0 | 10        |

| #  | Article                                                                                                                                                                                                                                              | IF  | CITATIONS |
|----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 55 | "Diminishing returns―for leaves of five ageâ€groups of <i>Phyllostachys edulis</i> culms. American<br>Journal of Botany, 2021, 108, 1662-1672.                                                                                                       | 0.8 | 20        |
| 56 | Alternaria Black Spot (Alternaria brassicae) Infection Severity on Cruciferous Oilseed Crops. Applied Sciences (Switzerland), 2021, 11, 8507.                                                                                                        | 1.3 | 2         |
| 57 | Global patterns of leaf construction traits and their covariation along climate and soil environmental gradients. New Phytologist, 2021, 232, 1648-1660.                                                                                             | 3.5 | 18        |
| 58 | AusTraits, a curated plant trait database for the Australian flora. Scientific Data, 2021, 8, 254.                                                                                                                                                   | 2.4 | 73        |
| 59 | Gall- and erineum-forming <i>Eriophyes</i> mites alter photosynthesis and volatile emissions in an infection severity-dependent manner in broad-leaved trees <i>Alnus glutinosa</i> and <i>Tilia cordata</i> . Tree Physiology, 2021, 41, 1122-1142. | 1.4 | 5         |
| 60 | Can Leaf Shape be Represented by the Ratio of Leaf Width to Length? Evidence from Nine Species of<br>Magnolia and Michelia (Magnoliaceae). Forests, 2021, 12, 41.                                                                                    | 0.9 | 16        |
| 61 | Enhanced photosynthetic nitrogen use efficiency and increased nitrogen allocation to photosynthetic machinery under cotton domestication. Photosynthesis Research, 2021, 150, 239-250.                                                               | 1.6 | 19        |
| 62 | Modelling the influence of biotic plant stress on atmospheric aerosol particle processes throughout a growing season. Atmospheric Chemistry and Physics, 2021, 21, 17389-17431.                                                                      | 1.9 | 6         |
| 63 | Pivotal Role of Mesophyll Conductance in Shaping Photosynthetic Performance across 67<br>Structurally Diverse Gymnosperm Species. International Journal of Plant Sciences, 2020, 181, 116-128.                                                       | 0.6 | 15        |
| 64 | Predictability of Leaf Morphological Traits for Paleoecological Reconstruction: The Case of Leaf<br>Cuticle and Leaf Dry Mass per Area. International Journal of Plant Sciences, 2020, 181, 129-141.                                                 | 0.6 | 5         |
| 65 | Are stomata in ferns and allies sluggish? Stomatal responses to <scp>CO</scp> <sub>2</sub> , humidity and light and their scaling with size and density. New Phytologist, 2020, 225, 183-195.                                                        | 3.5 | 28        |
| 66 | Does the law of diminishing returns in leaf scaling apply to vines? – Evidence from 12 species of climbing plants. Global Ecology and Conservation, 2020, 21, e00830.                                                                                | 1.0 | 22        |
| 67 | Influence of Brevibacterium linens RS16 on foliage photosynthetic and volatile emission<br>characteristics upon heat stress in Eucalyptus grandis. Science of the Total Environment, 2020, 700,<br>134453.                                           | 3.9 | 25        |
| 68 | Does the leaf economic spectrum hold within plant functional types? A Bayesian multivariate trait<br>metaâ€analysis. Ecological Applications, 2020, 30, e02064.                                                                                      | 1.8 | 22        |
| 69 | TRY plant trait database – enhanced coverage and open access. Global Change Biology, 2020, 26, 119-188.                                                                                                                                              | 4.2 | 1,038     |
| 70 | Similar factors underlie tree abundance in forests in native and alien ranges. Global Ecology and<br>Biogeography, 2020, 29, 281-294.                                                                                                                | 2.7 | 21        |
| 71 | Evolutionary trends in RuBisCO kinetics and their coâ€evolution with CO <sub>2</sub> concentrating mechanisms. Plant Journal, 2020, 101, 897-918.                                                                                                    | 2.8 | 100       |
| 72 | Does winter oilseed rape as a winter cover crop influence potato late blight development in an organic crop rotation?. Biological Agriculture and Horticulture, 2020, 36, 71-83.                                                                     | 0.5 | 9         |

| #  | Article                                                                                                                                                                                                                      | IF   | CITATIONS |
|----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 73 | Responses of isoprene emission and photochemical efficiency to severe drought combined with prolonged hot weather in hybrid Populus. Journal of Experimental Botany, 2020, 71, 7364-7381.                                    | 2.4  | 14        |
| 74 | Comparison of the Scaling Relationships of Leaf Biomass versus Surface Area between Spring and<br>Summer for Two Deciduous Tree Species. Forests, 2020, 11, 1010.                                                            | 0.9  | 19        |
| 75 | Revisiting the Functional Basis of Sclerophylly Within the Leaf Economics Spectrum of Oaks: Different<br>Roads to Rome. Current Forestry Reports, 2020, 6, 260-281.                                                          | 3.4  | 26        |
| 76 | Variability in the chloroplast area lining the intercellular airspace and cell walls drives mesophyll conductance in gymnosperms. Journal of Experimental Botany, 2020, 71, 4958-4971.                                       | 2.4  | 19        |
| 77 | Isoprenoid and aromatic compound emissions in relation to leaf structure, plant growth form and species ecology in 45 East-Asian urban subtropical woody species. Urban Forestry and Urban Greening, 2020, 53, 126705.       | 2.3  | 12        |
| 78 | Fighting Fusarium Pathogens in the Era of Climate Change: A Conceptual Approach. Pathogens, 2020, 9,<br>419.                                                                                                                 | 1.2  | 33        |
| 79 | Global gradients in intraspecific variation in vegetative and floral traits are partially associated with climate and species richness. Global Ecology and Biogeography, 2020, 29, 992-1007.                                 | 2.7  | 51        |
| 80 | The fate of carbon in a mature forest under carbon dioxide enrichment. Nature, 2020, 580, 227-231.                                                                                                                           | 13.7 | 218       |
| 81 | Global plant trait relationships extend to the climatic extremes of the tundra biome. Nature<br>Communications, 2020, 11, 1351.                                                                                              | 5.8  | 52        |
| 82 | Role of Stomatal Conductance in Modifying the Dose Response of Stress-Volatile Emissions in Methyl<br>Jasmonate Treated Leaves of Cucumber (Cucumis Sativa). International Journal of Molecular Sciences,<br>2020, 21, 1018. | 1.8  | 20        |
| 83 | Contrasting coâ€occurrence patterns of photobiont and cystobasidiomycete yeast associated with common epiphytic lichen species. New Phytologist, 2020, 227, 1362-1375.                                                       | 3.5  | 50        |
| 84 | Impact of Gall-Forming Insects on Global BVOC Emissions and Climate: A Perspective. Frontiers in<br>Forests and Global Change, 2020, 3, .                                                                                    | 1.0  | 7         |
| 85 | Leaf Bilateral Symmetry and the Scaling of the Perimeter vs. the Surface Area in 15 Vine Species.<br>Forests, 2020, 11, 246.                                                                                                 | 0.9  | 19        |
| 86 | Simulating functional diversity of European natural forests along climatic gradients. Journal of<br>Biogeography, 2020, 47, 1069-1085.                                                                                       | 1.4  | 19        |
| 87 | Microstructural and physiological responses to cadmium stress under different nitrogen levels in<br>Populus cathayana females and males. Tree Physiology, 2020, 40, 30-45.                                                   | 1.4  | 26        |
| 88 | Plant organ senescence above- and belowground in trees: how to best salvage resources for new growth?. Tree Physiology, 2020, 40, 981-986.                                                                                   | 1.4  | 4         |
| 89 | Application of widely used fungicides does not necessarily affect grain yield, and incidence of<br>Fusarium spp. and mycotoxins DON, HT-2 and T-2 in spring barley in northern climates. Kvasný PrÅ⁻mysl,<br>2020, 66, .     | 0.1  | 6         |
| 90 | EVALUATION OF DOWNY MILDEW (HYALOPERONOSPORA BRASSICAE) INFECTION SEVERITY ON DIFFERENT CRUCIFEROUS OILSEED CROPS. Rural Development 2019, 2020, 2019, 329-335.                                                              | 0.1  | 1         |

| #   | Article                                                                                                                                                                                                                                             | IF  | CITATIONS |
|-----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 91  | Responses of Aspen Leaves to Heatflecks: Both Damaging and Non-Damaging Rapid Temperature<br>Excursions Reduce Photosynthesis. Plants, 2019, 8, 145.                                                                                                | 1.6 | 20        |
| 92  | Anatomical constraints to nonstomatal diffusion conductance and photosynthesis in lycophytes and bryophytes. New Phytologist, 2019, 222, 1256-1270.                                                                                                 | 3.5 | 72        |
| 93  | Rootstock determines the drought resistance of poplar grafting combinations. Tree Physiology, 2019, 39, 1855-1866.                                                                                                                                  | 1.4 | 23        |
| 94  | Robustness of trait connections across environmental gradients and growth forms. Global Ecology and Biogeography, 2019, 28, 1806-1826.                                                                                                              | 2.7 | 56        |
| 95  | Lethal heat stress-dependent volatile emissions from tobacco leaves: what happens beyond the thermal edge?. Journal of Experimental Botany, 2019, 70, 5017-5030.                                                                                    | 2.4 | 25        |
| 96  | Foliage inoculation by Burkholderia vietnamiensis CBMB40 antagonizes methyl jasmonate-mediated<br>stress in Eucalyptus grandis. Journal of Plant Physiology, 2019, 242, 153032.                                                                     | 1.6 | 24        |
| 97  | Effects of competition and phosphorus fertilization on leaf and root traits of late-successional conifers Abies fabri and Picea brachytyla. Environmental and Experimental Botany, 2019, 162, 14-24.                                                | 2.0 | 17        |
| 98  | sPlot $\hat{a} \in$ A new tool for global vegetation analyses. Journal of Vegetation Science, 2019, 30, 161-186.                                                                                                                                    | 1.1 | 185       |
| 99  | Leaf economics and plant hydraulics drive leaf : wood area ratios. New Phytologist, 2019, 224,<br>1544-1556.                                                                                                                                        | 3.5 | 77        |
| 100 | Potential improvement of photosynthetic CO2 assimilation in crops by exploiting the natural variation in the temperature response of Rubisco catalytic traits. Current Opinion in Plant Biology, 2019, 49, 60-67.                                   | 3.5 | 32        |
| 101 | Methylobacterium oryzae CBMB20 influences photosynthetic traits, volatile emission and ethylene<br>metabolism in Oryza sativa genotypes grown in salt stress conditions. Planta, 2019, 249, 1903-1919.                                              | 1.6 | 27        |
| 102 | A novel approach for real-time monitoring of leaf wounding responses demonstrates unprecedently fast and high emissions of volatiles from cut leaves. Plant Science, 2019, 283, 256-265.                                                            | 1.7 | 22        |
| 103 | Drier tropical forests are susceptible to functional changes in response to a longâ€ŧerm drought.<br>Ecology Letters, 2019, 22, 855-865.                                                                                                            | 3.0 | 75        |
| 104 | Canopy leaf area index at its higher end: dissection of structural controls from leaf to canopy scales in bryophytes. New Phytologist, 2019, 223, 118-133.                                                                                          | 3.5 | 18        |
| 105 | Towards an integrative approach to evaluate the environmental ecosystem services provided by urban forest. Journal of Forestry Research, 2019, 30, 1981-1996.                                                                                       | 1.7 | 73        |
| 106 | Ozone and Wounding Stresses Differently Alter the Temporal Variation in Formylated<br>Phloroglucinols in Eucalyptus globulus Leaves. Metabolites, 2019, 9, 46.                                                                                      | 1.3 | 9         |
| 107 | Elevated temperature differently affects growth, photosynthetic capacity, nutrient absorption and<br>leaf ultrastructure of Abies faxoniana and Picea purpurea under intra- and interspecific competition.<br>Tree Physiology, 2019, 39, 1342-1357. | 1.4 | 21        |
| 108 | Asymmetric pruning reveals how organ connectivity alters the functional balance between leaves and roots of Chinese fir. Journal of Experimental Botany, 2019, 70, 1941-1953.                                                                       | 2.4 | 7         |

| #   | Article                                                                                                                                                                                                                                                                   | IF   | CITATIONS |
|-----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 109 | A metaâ€analysis of plant responses to light intensity for 70 traits ranging from molecules to whole plant performance. New Phytologist, 2019, 223, 1073-1105.                                                                                                            | 3.5  | 307       |
| 110 | Petiole gall aphid (Pemphigus spyrothecae) infestation of Populus × petrovskiana leaves alters foliage photosynthetic characteristics and leads to enhanced emissions of both constitutive and stress-induced volatiles. Trees - Structure and Function, 2019, 33, 37-51. | 0.9  | 19        |
| 111 | Traditional plant functional groups explain variation in economic but not sizeâ€related traits across<br>the tundra biome. Global Ecology and Biogeography, 2019, 28, 78-95.                                                                                              | 2.7  | 49        |
| 112 | The effects of intervessel pit characteristics on xylem hydraulic efficiency and photosynthesis in hemiepiphytic and nonâ€hemiepiphytic Ficus species. Physiologia Plantarum, 2019, 167, 661-675.                                                                         | 2.6  | 8         |
| 113 | Global photosynthetic capacity is optimized to the environment. Ecology Letters, 2019, 22, 506-517.                                                                                                                                                                       | 3.0  | 153       |
| 114 | Plant-plant interactions and N fertilization shape soil bacterial and fungal communities. Soil Biology and Biochemistry, 2019, 128, 127-138.                                                                                                                              | 4.2  | 94        |
| 115 | Evaluation of foliar late blight resistance of potato cultivars in northern Baltic conditions.<br>Zemdirbyste, 2019, 106, 45-52.                                                                                                                                          | 0.3  | 10        |
| 116 | A major trade-off between structural and photosynthetic investments operative across plant and needle ages in three Mediterranean pines. Tree Physiology, 2018, 38, 543-557.                                                                                              | 1.4  | 38        |
| 117 | When leaves go over the thermal edge. Plant, Cell and Environment, 2018, 41, 1247-1250.                                                                                                                                                                                   | 2.8  | 18        |
| 118 | Structural controls on photosynthetic capacity through juvenileâ€ŧoâ€adult transition and needle<br>ageing in Mediterranean pines. Functional Ecology, 2018, 32, 1479-1491.                                                                                               | 1.7  | 30        |
| 119 | Glandular trichomes as a barrier against atmospheric oxidative stress: Relationships with ozone<br>uptake, leaf damage, and emission of LOX products across a diverse set of species. Plant, Cell and<br>Environment, 2018, 41, 1263-1277.                                | 2.8  | 69        |
| 120 | Divergent assemblage patterns and driving forces for bacterial and fungal communities along a glacier forefield chronosequence. Soil Biology and Biochemistry, 2018, 118, 207-216.                                                                                        | 4.2  | 133       |
| 121 | Ozone-triggered surface uptake and stress volatile emissions in Nicotiana tabacum â€~Wisconsin'.<br>Journal of Experimental Botany, 2018, 69, 681-697.                                                                                                                    | 2.4  | 26        |
| 122 | Diterpenoid fingerprints in pine foliage across an environmental and chemotypic matrix: Isoabienol content is a key trait differentiating chemotypes. Phytochemistry, 2018, 147, 80-88.                                                                                   | 1.4  | 7         |
| 123 | Changes in photosynthetic rate and stress volatile emissions through desiccationâ€rehydration cycles<br>in desiccationâ€tolerant epiphytic filmy ferns ( <scp>Hymenophyllaceae</scp> ). Plant, Cell and<br>Environment, 2018, 41, 1605-1617.                              | 2.8  | 22        |
| 124 | Shifts in tree functional composition amplify the response of forest biomass to climate. Nature, 2018, 556, 99-102.                                                                                                                                                       | 13.7 | 99        |
| 125 | What Are Plant-Released Biogenic Volatiles and How They Participate in Landscape- to Global-Level Processes?. , 2018, , 29-56.                                                                                                                                            |      | 7         |
| 126 | Nitrogen-rich organic soils under warm well-drained conditions are global nitrous oxide emission hotspots. Nature Communications, 2018, 9, 1135.                                                                                                                          | 5.8  | 98        |

| #   | Article                                                                                                                                                                                                                                                   | IF   | CITATIONS |
|-----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 127 | Differential regulation of volatile emission from Eucalyptus globulus leaves upon single and combined ozone and wounding treatments through recovery and relationships with ozone uptake. Environmental and Experimental Botany, 2018, 145, 21-38.        | 2.0  | 39        |
| 128 | Evidence That Isoprene Emission Is Not Limited by Cytosolic Metabolites. Exogenous Malate Does Not<br>Invert the Reverse Sensitivity of Isoprene Emission to High [CO2]. Plant Physiology, 2018, 176, 1573-1586.                                          | 2.3  | 21        |
| 129 | Nutrient stoichiometry and land use rather than species richness determine plant functional diversity. Ecology and Evolution, 2018, 8, 601-616.                                                                                                           | 0.8  | 22        |
| 130 | Nutrientâ€rich plants emit a less intense blend of volatile isoprenoids. New Phytologist, 2018, 220,<br>773-784.                                                                                                                                          | 3.5  | 56        |
| 131 | Oak gall wasp infections of <i>Quercus robur</i> leaves lead to profound modifications in foliage photosynthetic and volatile emission characteristics. Plant, Cell and Environment, 2018, 41, 160-175.                                                   | 2.8  | 30        |
| 132 | Global trait–environment relationships of plant communities. Nature Ecology and Evolution, 2018, 2,<br>1906-1917.                                                                                                                                         | 3.4  | 397       |
| 133 | A methodology to derive global maps of leaf traits using remote sensing and climate data. Remote<br>Sensing of Environment, 2018, 218, 69-88.                                                                                                             | 4.6  | 104       |
| 134 | Plant functional trait change across a warming tundra biome. Nature, 2018, 562, 57-62.                                                                                                                                                                    | 13.7 | 451       |
| 135 | Alternative Carbon Sources for Isoprene Emission. Trends in Plant Science, 2018, 23, 1081-1101.                                                                                                                                                           | 4.3  | 30        |
| 136 | Storage of defense metabolites in the leaves of Myrtaceae: news of the eggs in different baskets. Tree<br>Physiology, 2018, 38, 1445-1450.                                                                                                                | 1.4  | 11        |
| 137 | Massive release of volatile organic compounds due to leaf midrib wounding in Populus tremula. Plant<br>Ecology, 2018, 219, 1021-1028.                                                                                                                     | 0.7  | 12        |
| 138 | Brevibacterium linens RS16 confers salt tolerance to Oryza sativa genotypes by regulating antioxidant defense and H+ ATPase activity. Microbiological Research, 2018, 215, 89-101.                                                                        | 2.5  | 47        |
| 139 | Methyl salicylate differently affects benzenoid and terpenoid volatile emissions in Betula pendula.<br>Tree Physiology, 2018, 38, 1513-1525.                                                                                                              | 1.4  | 18        |
| 140 | Inoculation of Brevibacterium linens RS16 in Oryza sativa genotypes enhanced salinity resistance:<br>Impacts on photosynthetic traits and foliar volatile emissions. Science of the Total Environment, 2018,<br>645, 721-732.                             | 3.9  | 36        |
| 141 | Temporal regulation of terpene synthase gene expression in Eucalyptus globulus leaves upon ozone<br>and wounding stresses: relationships with stomatal ozone uptake and emission responses.<br>Environmental and Experimental Botany, 2018, 155, 552-565. | 2.0  | 16        |
| 142 | Emissions of carotenoid cleavage products upon heat shock and mechanical wounding from a foliose lichen. Environmental and Experimental Botany, 2017, 133, 87-97.                                                                                         | 2.0  | 32        |
| 143 | Cellâ€level anatomical characteristics explain high mesophyll conductance and photosynthetic capacity<br>in sclerophyllous Mediterranean oaks. New Phytologist, 2017, 214, 585-596.                                                                       | 3.5  | 104       |
| 144 | Fading of wound-induced volatile release during Populus tremula leaf expansion. Journal of Plant<br>Research, 2017, 130, 157-165.                                                                                                                         | 1.2  | 13        |

| #   | Article                                                                                                                                                                                                                                            | IF                  | CITATIONS    |
|-----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------|--------------|
| 145 | Physiological and structural tradeoffs underlying the leaf economics spectrum. New Phytologist, 2017, 214, 1447-1463.                                                                                                                              | 3.5                 | 412          |
| 146 | Extremely thick cell walls and low mesophyll conductance: welcome to the world of ancient living!.<br>Journal of Experimental Botany, 2017, 68, 1639-1653.                                                                                         | 2.4                 | 96           |
| 147 | Genome sequencing and population genomic analyses provide insights into the adaptive landscape of silver birch. Nature Genetics, 2017, 49, 904-912.                                                                                                | 9.4                 | 221          |
| 148 | A roadmap for improving the representation of photosynthesis in Earth system models. New Phytologist, 2017, 213, 22-42.                                                                                                                            | 3.5                 | 365          |
| 149 | Photosynthesis: ancient, essential, complex, diverse … and in need of improvement in a changing world. New Phytologist, 2017, 213, 43-47.                                                                                                          | 3.5                 | 30           |
| 150 | Ozoneâ€induced foliar damage and release of stress volatiles is highly dependent on stomatal openness<br>and priming by lowâ€level ozone exposure in <scp><i>Phaseolus vulgaris</i></scp> . Plant, Cell and<br>Environment, 2017, 40, 1984-2003.   | 2.8                 | 66           |
| 151 | Disproportionate photosynthetic decline and inverse relationship between constitutive and induced volatile emissions upon feeding of Quercus robur leaves by large larvae of gypsy moth (Lymantria) Tj ETQq1 1 0.                                  | 78 <b>43</b> 014 rg | BT3/Dverlock |
| 152 | Changes of secondary metabolites in Pinus sylvestris L. needles under increasing soil water deficit.<br>Annals of Forest Science, 2017, 74, 1.                                                                                                     | 0.8                 | 29           |
| 153 | Global leaf trait estimates biased due to plasticity in the shade. Nature Plants, 2017, 3, 16201.                                                                                                                                                  | 4.7                 | 135          |
| 154 | Coordinated modifications in mesophyll conductance, photosynthetic potentials and leaf nitrogen contribute to explain the large variation in foliage net assimilation rates across Quercus ilex provenances. Tree Physiology, 2017, 37, 1084-1094. | 1.4                 | 30           |
| 155 | Global climatic drivers of leaf size. Science, 2017, 357, 917-921.                                                                                                                                                                                 | 6.0                 | 580          |
| 156 | Indicators of climate change adaptation from molecules to ecosystems. Regional Environmental Change, 2017, 17, 2055-2059.                                                                                                                          | 1.4                 | 1            |
| 157 | Interacting environmental and chemical stresses under global change in temperate aquatic ecosystems: stress responses, adaptation, and scaling. Regional Environmental Change, 2017, 17, 2061-2077.                                                | 1.4                 | 26           |
| 158 | Effects of phosphorus availability on later stages of primary succession in Gongga Mountain glacier retreat area. Environmental and Experimental Botany, 2017, 141, 103-112.                                                                       | 2.0                 | 13           |
| 159 | Environmental feedbacks in temperate aquatic ecosystems under global change: why do we need to consider chemical stressors?. Regional Environmental Change, 2017, 17, 2079-2096.                                                                   | 1.4                 | 11           |
| 160 | Generality of relationships between leaf pigment contents and spectral vegetation indices in Mallorca<br>(Spain). Regional Environmental Change, 2017, 17, 2097-2109.                                                                              | 1.4                 | 37           |
| 161 | The Role of Mesophyll Conductance in Oak Photosynthesis: Among- and Within-Species Variability. Tree Physiology, 2017, , 303-325.                                                                                                                  | 0.9                 | 6            |
| 162 | Mapping local and global variability in plant trait distributions. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, E10937-E10946.                                                                      | 3.3                 | 159          |

| #   | Article                                                                                                                                                                                                                | IF  | CITATIONS |
|-----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 163 | Nitrogen-controlled intra- and interspecific competition between Populus purdomii and Salix<br>rehderiana drive primary succession in the Gongga Mountain glacier retreat area. Tree Physiology,<br>2017, 37, 799-814. | 1.4 | 34        |
| 164 | Reproductive investments driven by sex and altitude in sympatric Populus and Salix trees. Tree Physiology, 2017, 37, 1503-1514.                                                                                        | 1.4 | 38        |
| 165 | Invasive species' leaf traits and dissimilarity from natives shape their impact on nitrogen cycling: a<br>metaâ€analysis. New Phytologist, 2017, 213, 128-139.                                                         | 3.5 | 69        |
| 166 | Methyl jasmonate-induced emission of biogenic volatiles is biphasic in cucumber: a high-resolution analysis of dose dependence. Journal of Experimental Botany, 2017, 68, 4679-4694.                                   | 2.4 | 60        |
| 167 | Observations, indicators and scenarios of biodiversity and ecosystem services change — a framework<br>to support policy and decision-making. Current Opinion in Environmental Sustainability, 2017, 29,<br>198-206.    | 3.1 | 11        |
| 168 | Three Key Sub-leaf Modules and the Diversity of Leaf Designs. Frontiers in Plant Science, 2017, 8, 1542.                                                                                                               | 1.7 | 17        |
| 169 | Integration of C1 and C2 Metabolism in Trees. International Journal of Molecular Sciences, 2017, 18, 2045.                                                                                                             | 1.8 | 25        |
| 170 | Climatic controls on leaf litter decomposition across European forests and grasslands revealed by reciprocal litter transplantation experiments. Biogeosciences, 2016, 13, 1621-1633.                                  | 1.3 | 44        |
| 171 | A compendium of temperature responses of Rubisco kinetic traits: variability among and within<br>photosynthetic groups and impacts on photosynthesis modeling. Journal of Experimental Botany, 2016,<br>67, 5067-5091. | 2.4 | 72        |
| 172 | Improved representation of plant functional types and physiology in the Joint UK Land Environment<br>Simulator (JULES v4.2) using plant trait information. Geoscientific Model Development, 2016, 9,<br>2415-2440.     | 1.3 | 115       |
| 173 | Multi-Substrate Terpene Synthases: Their Occurrence and Physiological Significance. Frontiers in Plant Science, 2016, 7, 1019.                                                                                         | 1.7 | 152       |
| 174 | How specialized volatiles respond to chronic and shortâ€ŧerm physiological and shock heat stress in<br><i>Brassica nigra</i> . Plant, Cell and Environment, 2016, 39, 2027-2042.                                       | 2.8 | 55        |
| 175 | Induction of stress volatiles and changes in essential oil content and composition upon microwave exposure in the aromatic plant Ocimum basilicum. Science of the Total Environment, 2016, 569-570, 489-495.           | 3.9 | 14        |
| 176 | The photosynthetic capacity in 35 ferns and fern allies: mesophyll <scp>CO</scp> <sub>2</sub><br>diffusion as a key trait. New Phytologist, 2016, 209, 1576-1590.                                                      | 3.5 | 163       |
| 177 | Leaf age dependent changes in within-canopy variation in leaf functional traits: a meta-analysis.<br>Journal of Plant Research, 2016, 129, 313-338.                                                                    | 1.2 | 72        |
| 178 | Functional traits of urban trees: air pollution mitigation potential. Frontiers in Ecology and the Environment, 2016, 14, 543-550.                                                                                     | 1.9 | 255       |
| 179 | Herbivory by an Outbreaking Moth Increases Emissions of Biogenic Volatiles and Leads to Enhanced<br>Secondary Organic Aerosol Formation Capacity. Environmental Science & Technology, 2016, 50,<br>11501-11510.        | 4.6 | 34        |
| 180 | Shedding light on shade: ecological perspectives of understorey plant life. Plant Ecology and Diversity, 2016, 9, 237-251.                                                                                             | 1.0 | 181       |

| #   | Article                                                                                                                                                                                                                                                          | IF               | CITATIONS         |
|-----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------|-------------------|
| 181 | Mono- and sesquiterpene release from tomato ( Solanum lycopersicum ) leaves upon mild and severe<br>heat stress and through recovery: From gene expression to emission responses. Environmental and<br>Experimental Botany, 2016, 132, 1-15.                     | 2.0              | 51                |
| 182 | Environmental Impacts on Plant Volatile Emission. Signaling and Communication in Plants, 2016, , 35-59.                                                                                                                                                          | 0.5              | 40                |
| 183 | Males exhibit competitive advantages over females ofPopulus deltoidesunder salinity stress. Tree<br>Physiology, 2016, 36, 1573-1584.                                                                                                                             | 1.4              | 44                |
| 184 | Spectacular Oscillations in Plant Isoprene Emission under Transient Conditions Explain the Enigmatic CO2 Response. Plant Physiology, 2016, 172, 2275-2285.                                                                                                       | 2.3              | 26                |
| 185 | A test of the †oneâ€point method' for estimating maximum carboxylation capacity from fieldâ€measured,<br>lightâ€saturated photosynthesis. New Phytologist, 2016, 210, 1130-1144.                                                                                 | 3.5              | 159               |
| 186 | Mesophyll conductance to CO <sub>2</sub> and Rubisco as targets for improving intrinsic water use efficiency in C <sub>3</sub> plants. Plant, Cell and Environment, 2016, 39, 965-982.                                                                           | 2.8              | 186               |
| 187 | Toxic Influence of Key Organic Soil Pollutants on the Total Flavonoid Content in Wheat Leaves.<br>Water, Air, and Soil Pollution, 2016, 227, 1.                                                                                                                  | 1.1              | 15                |
| 188 | Scaling of photosynthesis and constitutive and induced volatile emissions with severity of leaf<br>infection by rust fungus ( <i>Melampsora larici-populina</i> ) in <i>Populus<br/>balsamifera</i> var. <i>suaveolens</i> . Tree Physiology, 2016, 36, 856-872. | 1.4              | 46                |
| 189 | Large within-population genetic diversity of the widespread conifer Pinus sylvestris at its soil<br>fertility limit characterized by nuclear and chloroplast microsatellite markers. European Journal of<br>Forest Research, 2016, 135, 161-177.                 | 1.1              | 21                |
| 190 | Growth, biomass allocation and photosynthetic responses are related to intensity of root severance and soil moisture conditions in the plantation tree <i>Cunninghamia lanceolata</i> . Tree Physiology, 2016, 36, 807-817.                                      | 1.4              | 50                |
| 191 | Sexual competition affects biomass partitioning, carbon–nutrient balance, Cd allocation and<br>ultrastructure ofPopulus cathayanafemales and males exposed to Cd stress. Tree Physiology, 2016, 36,<br>tpw054.                                                   | 1.4              | 11                |
| 192 | Canopy Photosynthesis: From Basics to Applications. Advances in Photosynthesis and Respiration, 2016, , .                                                                                                                                                        | 1.0              | 24                |
| 193 | Regulation of Floral Terpenoid Emission and Biosynthesis in Sweet Basil (Ocimum basilicum). Journal of Plant Growth Regulation, 2016, 35, 921-935.                                                                                                               | 2.8              | 16                |
| 194 | Leaf functional plasticity decreases the water consumption without further consequences for<br>carbon uptake in <i>Quercus coccifera</i> L. under Mediterranean conditions. Tree Physiology, 2016,<br>36, 356-367.                                               | 1.4              | 27                |
| 195 | Does the touch of cold make evergreen leaves tougher?. Tree Physiology, 2016, 36, 267-272.                                                                                                                                                                       | 1.4              | 51                |
| 196 | Within-Canopy Variations in Functional Leaf Traits: Structural, Chemical and Ecological Controls and Diversity of Responses. Advances in Photosynthesis and Respiration, 2016, , 101-141.                                                                        | 1.0              | 30                |
| 197 | Light acclimation of photosynthesis in two closely related firs (Abies pinsapoBoiss. andAbies) Tj ETQq1 1 0.78431<br>300-310.                                                                                                                                    | 4 rgBT /C<br>1.4 | overlock 10<br>40 |
| 198 | SMEAR Estonia: Perspectives of a large-scale forest ecosystem – atmosphere research infrastructure.<br>Forestry Studies, 2015, 63, 56-84.                                                                                                                        | 0.1              | 22                |

| #   | Article                                                                                                                                                                                                                  | IF  | CITATIONS |
|-----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 199 | Controls of the quantum yield and saturation light of isoprene emission in differentâ€aged aspen<br>leaves. Plant, Cell and Environment, 2015, 38, 2707-2720.                                                            | 2.8 | 20        |
| 200 | Leaf economics and hydraulic traits are decoupled in five speciesâ€rich tropicalâ€subtropical forests.<br>Ecology Letters, 2015, 18, 899-906.                                                                            | 3.0 | 175       |
| 201 | Bisphosphonate Inhibitors Reveal a Large Elasticity of Plastidic Isoprenoid Synthesis Pathway in<br>Isoprene-Emitting Hybrid Aspen. Plant Physiology, 2015, 168, 532-548.                                                | 2.3 | 26        |
| 202 | Uncovering the hidden facets of drought stress: secondary metabolites make the difference. Tree Physiology, 2015, 36, tpv128.                                                                                            | 1.4 | 53        |
| 203 | Emission Timetable and Quantitative Patterns of Wound-Induced Volatiles Across Different Leaf<br>Damage Treatments in Aspen (Populus Tremula). Journal of Chemical Ecology, 2015, 41, 1105-1117.                         | 0.9 | 45        |
| 204 | Optimum temperature for floral terpene emissions tracks the mean temperature of the flowering season. Functional Plant Biology, 2015, 42, 851.                                                                           | 1.1 | 31        |
| 205 | Urban plant physiology: adaptation-mitigation strategies under permanent stress. Trends in Plant<br>Science, 2015, 20, 72-75.                                                                                            | 4.3 | 128       |
| 206 | How light, temperature, and measurement and growth [CO2] interactively control isoprene emission in hybrid aspen. Journal of Experimental Botany, 2015, 66, 841-851.                                                     | 2.4 | 36        |
| 207 | Polytolerance to abiotic stresses: how universal is the shade–drought tolerance tradeâ€off in woody species?. Global Ecology and Biogeography, 2015, 24, 571-580.                                                        | 2.7 | 54        |
| 208 | Temperature responses of the Rubisco maximum carboxylase activity across domains of life:<br>phylogenetic signals, trade-offs, and importance for carbon gain. Photosynthesis Research, 2015, 123,<br>183-201.           | 1.6 | 80        |
| 209 | Global variability in leaf respiration in relation to climate, plant functional types and leaf traits. New Phytologist, 2015, 206, 614-636.                                                                              | 3.5 | 350       |
| 210 | Partial shading of lateral branches affects growth, and foliage nitrogen- and water-use efficiencies<br>in the conifer Cunninghamia lanceolata growing in a warm monsoon climate. Tree Physiology, 2015, 35,<br>632-643. | 1.4 | 41        |
| 211 | Germacrene A synthase in yarrow (Achillea millefolium) is an enzyme with mixed substrate specificity:<br>gene cloning, functional characterization and expression analysis. Frontiers in Plant Science, 2015, 6,<br>111. | 1.7 | 53        |
| 212 | Global effects of soil and climate on leaf photosynthetic traits and rates. Global Ecology and Biogeography, 2015, 24, 706-717.                                                                                          | 2.7 | 254       |
| 213 | A worldwide analysis of within anopy variations in leaf structural, chemical and physiological traits<br>across plant functional types. New Phytologist, 2015, 205, 973-993.                                             | 3.5 | 324       |
| 214 | Non-structural carbohydrates in woody plants compared among laboratories. Tree Physiology, 2015, 35, tpv073.                                                                                                             | 1.4 | 163       |
| 215 | Bias in leaf dry mass estimation after oven-drying isoprenoid-storing leaves. Trees - Structure and<br>Function, 2015, 29, 1805-1816.                                                                                    | 0.9 | 11        |
| 216 | Temperature dependencies of Henry's law constants for different plant sesquiterpenes. Chemosphere,<br>2015, 138, 751-757.                                                                                                | 4.2 | 22        |

| #   | Article                                                                                                                                                                                                                | IF  | CITATIONS |
|-----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 217 | Acclimation of isoprene emission and photosynthesis to growth temperature in hybrid aspen:<br>resolving structural and physiological controls. Plant, Cell and Environment, 2015, 38, 751-766.                         | 2.8 | 33        |
| 218 | Sexual competition and <scp>N</scp> supply interactively affect the dimorphism and competiveness of opposite sexes in <i><scp>P</scp>opulus cathayana</i> . Plant, Cell and Environment, 2015, 38, 1285-1298.          | 2.8 | 44        |
| 219 | Is there a species spectrum within the worldâ€wide leaf economics spectrum? Major variations in leaf<br>functional traits in the Mediterranean sclerophyll <i>Quercus ilex</i> . New Phytologist, 2015, 205,<br>79-96. | 3.5 | 189       |
| 220 | Drought-Tolerance of Wheat Improved by Rhizosphere Bacteria from Harsh Environments: Enhanced<br>Biomass Production and Reduced Emissions of Stress Volatiles. PLoS ONE, 2014, 9, e96086.                              | 1.1 | 506       |
| 221 | Changes in floral bouquets from compoundâ€specific responses to increasing temperatures. Global<br>Change Biology, 2014, 20, 3660-3669.                                                                                | 4.2 | 93        |
| 222 | Gas Chromatography–Mass Spectrometry Method for Determination of Biogenic Volatile Organic<br>Compounds Emitted by Plants. Methods in Molecular Biology, 2014, 1153, 161-169.                                          | 0.4 | 52        |
| 223 | Coping with low light under high atmospheric dryness: shade acclimation in a Mediterranean conifer<br>(Abies pinsapo Boiss.). Tree Physiology, 2014, 34, 1321-1333.                                                    | 1.4 | 12        |
| 224 | Improving modeling of the 'dark part' of canopy carbon gain. Tree Physiology, 2014, 34, 557-563.                                                                                                                       | 1.4 | 9         |
| 225 | Tree age-dependent changes in photosynthetic and respiratory CO2 exchange in leaves of micropropagated diploid, triploid and hybrid aspen. Tree Physiology, 2014, 34, 585-594.                                         | 1.4 | 11        |
| 226 | Metabolic Flux Analysis of Plastidic Isoprenoid Biosynthesis in Poplar Leaves Emitting and Nonemitting<br>Isoprene Â. Plant Physiology, 2014, 165, 37-51.                                                              | 2.3 | 124       |
| 227 | Functional distinctiveness of major plant lineages. Journal of Ecology, 2014, 102, 345-356.                                                                                                                            | 1.9 | 108       |
| 228 | Oak powdery mildew (Erysiphe alphitoides)-induced volatile emissions scale with the degree of infection in Quercus robur. Tree Physiology, 2014, 34, 1399-1410.                                                        | 1.4 | 54        |
| 229 | Cohort-specific tuning of foliage physiology to interacting stresses in evergreens. Tree Physiology, 2014, 34, 1301-1304.                                                                                              | 1.4 | 10        |
| 230 | Rubisco catalytic properties optimized for present and future climatic conditions. Plant Science, 2014, 226, 61-70.                                                                                                    | 1.7 | 41        |
| 231 | Competition between isoprene emission and pigment synthesis during leaf development in aspen. Plant,<br>Cell and Environment, 2014, 37, 724-741.                                                                       | 2.8 | 49        |
| 232 | A fully integrated isoprenoid emissions model coupling emissions to photosynthetic characteristics.<br>Plant, Cell and Environment, 2014, 37, 1965-1980.                                                               | 2.8 | 64        |
| 233 | Photosynthetic responses to stress in Mediterranean evergreens: Mechanisms and models.<br>Environmental and Experimental Botany, 2014, 103, 24-41.                                                                     | 2.0 | 84        |
| 234 | Volatile organic compound emissions from Alnus glutinosa under interacting drought and herbivory stresses. Environmental and Experimental Botany, 2014, 100, 55-63.                                                    | 2.0 | 105       |

| #   | Article                                                                                                                                                                                                                                      | IF        | CITATIONS |
|-----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------|-----------|
| 235 | A model of plant isoprene emission based on available reducing power captures responses to atmospheric <scp>CO</scp> <sub>2</sub> . New Phytologist, 2014, 203, 125-139.                                                                     | 3.5       | 81        |
| 236 | Bidirectional exchange of biogenic volatiles with vegetation: emission sources, reactions, breakdown and deposition. Plant, Cell and Environment, 2014, 37, 1790-1809.                                                                       | 2.8       | 107       |
| 237 | Plant volatiles in polluted atmospheres: stress responses and signal degradation. Plant, Cell and Environment, 2014, 37, 1892-1904.                                                                                                          | 2.8       | 150       |
| 238 | Which is a better predictor of plant traits: temperature or precipitation?. Journal of Vegetation Science, 2014, 25, 1167-1180.                                                                                                              | 1.1       | 323       |
| 239 | Influence of microwave frequency electromagnetic radiation on terpene emission and content in aromatic plants. Journal of Plant Physiology, 2014, 171, 1436-1443.                                                                            | 1.6       | 31        |
| 240 | A screening study of leaf terpene emissions of 43 rainforest species in Danum Valley Conservation<br>Area (Borneo) and their relationships with chemical and morphological leaf traits. Plant Biosystems,<br>2014, 148, 307-317.             | 0.8       | 13        |
| 241 | Are leaf functional traits â€`invariant' with plant size and what is â€`invariance' anyway?. Functional<br>Ecology, 2014, 28, 1330-1343.                                                                                                     | 1.7       | 46        |
| 242 | Scaling Light Harvesting from Moss "Leaves―to Canopies. Advances in Photosynthesis and Respiration, 2014, , 151-171.                                                                                                                         | 1.0       | 13        |
| 243 | Diffusional conductances to CO2 as a target for increasing photosynthesis and photosynthetic water-use efficiency. Photosynthesis Research, 2013, 117, 45-59.                                                                                | 1.6       | 305       |
| 244 | Isoprenoid emissions, photosynthesis and mesophyll diffusion conductance in response to blue light.<br>Environmental and Experimental Botany, 2013, 95, 50-58.                                                                               | 2.0       | 25        |
| 245 | Diffuse Water Pollution by Anthraquinone and Azo Dyes in Environment Importantly Alters Foliage<br>Volatiles, Carotenoids and Physiology in Wheat (Triticum aestivum). Water, Air, and Soil Pollution,<br>2013, 224, 1.                      | 1.1       | 66        |
| 246 | The Biochemistry and Molecular Biology of Volatile Messengers in Trees. Tree Physiology, 2013, , 47-93.                                                                                                                                      | 0.9       | 25        |
| 247 | Influence of nine antibiotics on key secondary metabolites and physiological characteristics in<br>Triticum aestivum: Leaf volatiles as a promising new tool to assess toxicity. Ecotoxicology and<br>Environmental Safety, 2013, 87, 70-79. | 2.9       | 76        |
| 248 | Volatile isoprenoid emissions from plastid to planet. New Phytologist, 2013, 197, 49-57.                                                                                                                                                     | 3.5       | 142       |
| 249 | Inter- and intra-annual variations in canopy fine litterfall and carbon and nitrogen inputs to the forest floor in two European coniferous forests. Annals of Forest Science, 2013, 70, 367-379.                                             | 0.8       | 29        |
| 250 | Foliar chemistry and standing folivory of early and late-successional species in a Bornean rainforest.<br>Plant Ecology and Diversity, 2013, 6, 245-256.                                                                                     | 1.0       | 11        |
| 251 | Elevated atmospheric <scp>CO</scp> <sub>2</sub> concentration leads to increased wholeâ€plant<br>isoprene emission in hybrid aspen ( <i><scp>P</scp>opulus) Tj ETQq1 1 0.784314 rgBT /Overlock 10 Tf 50 97 T</i>                             | d (tæmula |           |
| 252 | Effects of nitrogen fertilization on insect pests, their parasitoids, plant diseases and volatile organic compounds in Brassica napus. Crop Protection, 2013, 43, 79-88.                                                                     | 1.0       | 68        |

| #   | Article                                                                                                                                                                                                                        | IF  | CITATIONS |
|-----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 253 | Quantitative patterns between plant volatile emissions induced by biotic stresses and the degree of damage. Frontiers in Plant Science, 2013, 4, 262.                                                                          | 1.7 | 205       |
| 254 | Importance of leaf anatomy in determining mesophyll diffusion conductance to CO2 across species:<br>quantitative limitations and scaling up by models. Journal of Experimental Botany, 2013, 64, 2269-2281.                    | 2.4 | 348       |
| 255 | Elevated [CO2] magnifies isoprene emissions under heat and improves thermal resistance in hybrid aspen. Journal of Experimental Botany, 2013, 64, 5509-5523.                                                                   | 2.4 | 55        |
| 256 | Highly variable chemical signatures over short spatial distances among Scots pine (Pinus sylvestris)<br>populations. Tree Physiology, 2013, 33, 374-387.                                                                       | 1.4 | 26        |
| 257 | Leaf-Level Models of Constitutive and Stress-Driven Volatile Organic Compound Emissions. Tree Physiology, 2013, , 315-355.                                                                                                     | 0.9 | 52        |
| 258 | Scaling BVOC Emissions from Leaf to Canopy and Landscape: How Different Are Predictions Based on Contrasting Emission Algorithms?. Tree Physiology, 2013, , 357-390.                                                           | 0.9 | 5         |
| 259 | State-of-the-Art of BVOC Research: What Do We Have and What Have We Missed? A Synthesis. Tree Physiology, 2013, , 509-528.                                                                                                     | 0.9 | 8         |
| 260 | Photosynthetic acclimation to light in woody and herbaceous species: a comparison of leaf<br>structure, pigment content and chlorophyll fluorescence characteristics measured in the field. Plant<br>Biology, 2012, 14, 88-99. | 1.8 | 75        |
| 261 | Measures of Light in Studies on Light-Driven Plant Plasticity in Artificial Environments. Frontiers in<br>Plant Science, 2012, 3, 156.                                                                                         | 1.7 | 19        |
| 262 | Optimization of foliage photosynthetic capacity in tree canopies: towards identifying missing constraints. Tree Physiology, 2012, 32, 505-509.                                                                                 | 1.4 | 88        |
| 263 | Anatomical basis of variation in mesophyll resistance in eastern Australian sclerophylls: news of a long and winding path. Journal of Experimental Botany, 2012, 63, 5105-5119.                                                | 2.4 | 143       |
| 264 | Circadian control of global isoprene emissions. Nature Geoscience, 2012, 5, 435-435.                                                                                                                                           | 5.4 | 10        |
| 265 | Roles of climate and functional traits in controlling toothed vs. untoothed leaf margins. American<br>Journal of Botany, 2012, 99, 915-922.                                                                                    | 0.8 | 53        |
| 266 | Seasonal variation in vertical volatile compounds air concentrations within a remote hemiboreal mixed forest. Atmospheric Chemistry and Physics, 2012, 12, 3909-3926.                                                          | 1.9 | 46        |
| 267 | Enhanced isoprene emission capacity and altered light responsiveness in aspen grown under elevated atmospheric CO <sub>2</sub> concentration. Global Change Biology, 2012, 18, 3423-3440.                                      | 4.2 | 54        |
| 268 | Mesophyll diffusion conductance to CO2: An unappreciated central player in photosynthesis. Plant<br>Science, 2012, 193-194, 70-84.                                                                                             | 1.7 | 563       |
| 269 | Modeling the isoprene emission rate from leaves. New Phytologist, 2012, 195, 541-559.                                                                                                                                          | 3.5 | 111       |
| 270 | Emissions of green leaf volatiles and terpenoids from Solanum lycopersicum are quantitatively<br>related to the severity of cold and heat shock treatments. Journal of Plant Physiology, 2012, 169,<br>664-672.                | 1.6 | 161       |

| #   | Article                                                                                                                                                                                                                                            | IF  | CITATIONS |
|-----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 271 | Synthesizing greenhouse gas fluxes across nine European peatlands and shrublands – responses to climatic and environmental changes. Biogeosciences, 2012, 9, 3739-3755.                                                                            | 1.3 | 46        |
| 272 | Nutrient limitation reduces land carbon uptake in simulations with a model of combined carbon, nitrogen and phosphorus cycling. Biogeosciences, 2012, 9, 3547-3569.                                                                                | 1.3 | 295       |
| 273 | Can the capacity for isoprene emission acclimate to environmental modifications during autumn senescence in temperate deciduous tree species Populus tremula?. Journal of Plant Research, 2012, 125, 263-274.                                      | 1.2 | 39        |
| 274 | Temperature responses of dark respiration in relation to leaf sugar concentration. Physiologia<br>Plantarum, 2012, 144, 320-334.                                                                                                                   | 2.6 | 56        |
| 275 | Developmental changes in mesophyll diffusion conductance and photosynthetic capacity under different light and water availabilities in <i>Populus tremula</i> : how structure constrains function. Plant, Cell and Environment, 2012, 35, 839-856. | 2.8 | 203       |
| 276 | Leaf anatomical properties in relation to differences in mesophyll conductance to CO <sub>2</sub><br>and photosynthesis in two related Mediterranean <i>Abies</i> species. Plant, Cell and Environment,<br>2012, 35, 2121-2129.                    | 2.8 | 99        |
| 277 | Manipulation of VOC emissions with methyl jasmonate and carrageenan in the evergreen conifer<br><i>Pinus sylvestris</i> and evergreen broadleaf <i>Quercus ilex</i> . Plant Biology, 2012, 14, 57-65.                                              | 1.8 | 24        |
| 278 | Ecosystem-scale biosphere–atmosphere interactions of a hemiboreal mixed forest stand at Jävselja,<br>Estonia. Forest Ecology and Management, 2011, 262, 71-81.                                                                                     | 1.4 | 31        |
| 279 | Evergreens favored by higher responsiveness to increased CO2. Trends in Ecology and Evolution, 2011, 26, 136-142.                                                                                                                                  | 4.2 | 115       |
| 280 | Fame, glory and neglect in meta-analyses. Trends in Ecology and Evolution, 2011, 26, 493-494.                                                                                                                                                      | 4.2 | 36        |
| 281 | Estimations of isoprenoid emission capacity from enclosure studies: measurements, data processing, quality and standardized measurement protocols. Biogeosciences, 2011, 8, 2209-2246.                                                             | 1.3 | 166       |
| 282 | Lower P contents and more widespread terpene presence in old Bornean than in young Hawaiian tropical plant species guilds. Ecosphere, 2011, 2, art45.                                                                                              | 1.0 | 14        |
| 283 | When it is too hot for photosynthesis: heatâ€induced instability of photosynthesis in relation to respiratory burst, cell permeability changes and H <sub>2</sub> O <sub>2</sub> formation. Plant, Cell and Environment, 2011, 34, 113-126.        | 2.8 | 147       |
| 284 | TRY – a global database of plant traits. Global Change Biology, 2011, 17, 2905-2935.                                                                                                                                                               | 4.2 | 2,002     |
| 285 | Sensitivity of leaf size and shape to climate: global patterns and paleoclimatic applications. New Phytologist, 2011, 190, 724-739.                                                                                                                | 3.5 | 445       |
| 286 | Volatile Emissions from Alnus glutionosa Induced by Herbivory are Quantitatively Related to the Extent of Damage. Journal of Chemical Ecology, 2011, 37, 18-28.                                                                                    | 0.9 | 110       |
| 287 | Extracting and trapping biogenic volatile organic compounds stored in plant species. TrAC - Trends in Analytical Chemistry, 2011, 30, 978-989.                                                                                                     | 5.8 | 77        |
| 288 | Leaf Functional Anatomy in Relation to Photosynthesis. Plant Physiology, 2011, 155, 108-116.                                                                                                                                                       | 2.3 | 497       |

| #   | Article                                                                                                                                                                                                          | IF  | CITATIONS |
|-----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 289 | Induction of a Longer Term Component of Isoprene Release in Darkened Aspen Leaves: Origin and<br>Regulation under Different Environmental Conditions. Plant Physiology, 2011, 156, 816-831.                      | 2.3 | 45        |
| 290 | Tree Size- and Age-Related Changes in Leaf Physiology and Their Influence on Carbon Gain. Tree Physiology, 2011, , 235-253.                                                                                      | 0.9 | 55        |
| 291 | Instantaneous and historical temperature effects on alpha-pinene emissions in Pinus halepensis and Quercus ilex. Journal of Environmental Biology, 2011, 32, 1-6.                                                | 0.2 | 26        |
| 292 | Faster returns on â€~leaf economics' and different biogeochemical niche in invasive compared with<br>native plant species. Global Change Biology, 2010, 16, 2171-2185.                                           | 4.2 | 157       |
| 293 | Leaf rust induced volatile organic compounds signalling in willow during the infection. Planta, 2010, 232, 235-243.                                                                                              | 1.6 | 88        |
| 294 | Foliar Mono- and Sesquiterpene Contents in Relation to Leaf Economic Spectrum in Native and Alien<br>Species in Oahu (Hawai'i). Journal of Chemical Ecology, 2010, 36, 210-226.                                  | 0.9 | 15        |
| 295 | Higher Allocation to Low Cost Chemical Defenses in Invasive Species of Hawaii. Journal of Chemical Ecology, 2010, 36, 1255-1270.                                                                                 | 0.9 | 40        |
| 296 | Plant responses to heterogeneous environments: scaling from shoot modules and wholeâ€plant<br>functions to ecosystem processes. Ecological Research, 2010, 25, 691-692.                                          | 0.7 | 7         |
| 297 | A review of light interception in plant stands from leaf to canopy in different plant functional types and in species with varying shade tolerance. Ecological Research, 2010, 25, 693-714.                      | 0.7 | 458       |
| 298 | Modeling the temporal dynamics of monoterpene emission by isotopic labeling in Quercus ilex leaves.<br>Atmospheric Environment, 2010, 44, 392-399.                                                               | 1.9 | 10        |
| 299 | Flooding induced emissions of volatile signalling compounds in three tree species with differing waterlogging tolerance. Plant, Cell and Environment, 2010, 33, no-no.                                           | 2.8 | 97        |
| 300 | Measurement of volatile terpene emissions in 70 dominant vascular plant species in Hawaii: aliens emit<br>more than natives. Global Ecology and Biogeography, 2010, 19, 863-874.                                 | 2.7 | 40        |
| 301 | Acclimation of photosynthetic characteristics of the moss Pleurozium schreberi to among-habitat and within-canopy light gradients. Plant Biology, 2010, 12, 743-754.                                             | 1.8 | 27        |
| 302 | The leaf-level emission factor of volatile isoprenoids: caveats, model algorithms, response shapes and scaling. Biogeosciences, 2010, 7, 1809-1832.                                                              | 1.3 | 135       |
| 303 | The emission factor of volatile isoprenoids: stress, acclimation, and developmental responses.<br>Biogeosciences, 2010, 7, 2203-2223.                                                                            | 1.3 | 180       |
| 304 | A method to construct dose–response curves for a wide range of environmental factors and plant<br>traits by means of a meta-analysis of phenotypic data. Journal of Experimental Botany, 2010, 61,<br>2043-2055. | 2.4 | 151       |
| 305 | Temperature Response of Isoprene Emission in Vivo Reflects a Combined Effect of Substrate Limitations<br>and Isoprene Synthase Activity: A Kinetic Analysis. Plant Physiology, 2010, 154, 1558-1570.             | 2.3 | 109       |
| 306 | High withinâ€canopy variation in isoprene emission potentials in temperate trees: Implications for<br>predicting canopyâ€scale isoprene fluxes. Journal of Geophysical Research, 2010, 115, .                    | 3.3 | 46        |

| #   | Article                                                                                                                                                                                                                            | IF  | CITATIONS |
|-----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 307 | Responses of forest trees to single and multiple environmental stresses from seedlings to mature plants: Past stress history, stress interactions, tolerance and acclimation. Forest Ecology and Management, 2010, 260, 1623-1639. | 1.4 | 557       |
| 308 | Mild versus severe stress and BVOCs: thresholds, priming and consequences. Trends in Plant Science, 2010, 15, 145-153.                                                                                                             | 4.3 | 311       |
| 309 | Induced BVOCs: how to bug our models?. Trends in Plant Science, 2010, 15, 118-125.                                                                                                                                                 | 4.3 | 81        |
| 310 | Photosynthetic responses of cottonwood seedlings grown in glacial through future atmospheric [CO2] vary with phosphorus supply. Tree Physiology, 2010, 30, 1361-1372.                                                              | 1.4 | 54        |
| 311 | Leaf mesophyll diffusion conductance in 35 Australian sclerophylls covering a broad range of foliage structural and physiological variation. Journal of Experimental Botany, 2009, 60, 2433-2449.                                  | 2.4 | 121       |
| 312 | Importance of mesophyll diffusion conductance in estimation of plant photosynthesis in the field.<br>Journal of Experimental Botany, 2009, 60, 2271-2282.                                                                          | 2.4 | 137       |
| 313 | Preface. Journal of Experimental Botany, 2009, 60, 2215-2216.                                                                                                                                                                      | 2.4 | 11        |
| 314 | Postillumination Isoprene Emission: In Vivo Measurements of Dimethylallyldiphosphate Pool Size and<br>Isoprene Synthase Kinetics in Aspen Leaves. Plant Physiology, 2009, 149, 1609-1618.                                          | 2.3 | 86        |
| 315 | Evidence That Light, Carbon Dioxide, and Oxygen Dependencies of Leaf Isoprene Emission Are Driven by<br>Energy Status in Hybrid Aspen. Plant Physiology, 2009, 151, 448-460.                                                       | 2.3 | 83        |
| 316 | Atmospheric composition change: Ecosystems–Atmosphere interactions. Atmospheric Environment,<br>2009, 43, 5193-5267.                                                                                                               | 1.9 | 609       |
| 317 | Contrasting correlation networks between leaf structure, nitrogen and chlorophyll in herbaceous and woody canopies. Basic and Applied Ecology, 2009, 10, 309-318.                                                                  | 1.2 | 45        |
| 318 | Changes in the onset of spring growth in shrubland species in response to experimental warming along a north–south gradient in Europe. Global Ecology and Biogeography, 2009, 18, 473-484.                                         | 2.7 | 52        |
| 319 | Causes and consequences of variation in leaf mass per area (LMA): a metaâ€analysis. New Phytologist, 2009, 182, 565-588.                                                                                                           | 3.5 | 2,056     |
| 320 | Are species shade and drought tolerance reflected in leafâ€level structural and functional differentiation in Northern Hemisphere temperate woody flora?. New Phytologist, 2009, 184, 257-274.                                     | 3.5 | 146       |
| 321 | Seasonality of monoterpene emission potentials in <i>Quercus ilex</i> and <i>Pinus pinea</i> :<br>Implications for regional VOC emissions modeling. Journal of Geophysical Research, 2009, 114, .                                  | 3.3 | 38        |
| 322 | Role of mesophyll diffusion conductance in constraining potential photosynthetic productivity in the field. Journal of Experimental Botany, 2009, 60, 2249-2270.                                                                   | 2.4 | 271       |
| 323 | Process based inventory of isoprenoid emissions from European forests: model comparisons, current knowledge and uncertainties. Atmospheric Chemistry and Physics, 2009, 9, 4053-4076.                                              | 1.9 | 85        |
| 324 | Packing the Photosynthetic Machinery: From Leaf to Canopy. Advances in Photosynthesis and Respiration, 2009, , 363-399.                                                                                                            | 1.0 | 76        |

| #   | Article                                                                                                                                                                                                                    | IF               | CITATIONS    |
|-----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------|--------------|
| 325 | Modeling volatile isoprenoid emissions $\hat{a} \in $ a story with split ends. Plant Biology, 2008, 10, 8-28.                                                                                                              | 1.8              | 132          |
| 326 | Foliar limonene uptake scales positively with leaf lipid content: "nonâ€emitting―species absorb and<br>release monoterpenes. Plant Biology, 2008, 10, 129-137.                                                             | 1.8              | 38           |
| 327 | Shade Tolerance, a Key Plant Feature of Complex Nature and Consequences. Annual Review of Ecology,<br>Evolution, and Systematics, 2008, 39, 237-257.                                                                       | 3.8              | 1,110        |
| 328 | Monoterpene emissions from ornamental trees in urban areas: a case study of Barcelona, Spain. Plant<br>Biology, 2008, 10, 163-169.                                                                                         | 1.8              | 29           |
| 329 | Environmental and developmental controls on specific leaf area are little modified by leaf allometry.<br>Functional Ecology, 2008, 22, 565-576.                                                                            | 1.7              | 68           |
| 330 | Gardening and urban landscaping: significant players in global change. Trends in Plant Science, 2008,<br>13, 60-65.                                                                                                        | 4.3              | 126          |
| 331 | Why are estimates of global terrestrial isoprene emissions so similar (and why is this not so for) Tj ETQq1 1 0.784                                                                                                        | 1314 rgBT<br>1.9 | /Overlock 10 |
| 332 | Do we Underestimate the Importance of Leaf Size in Plant Economics? Disproportional Scaling of<br>Support Costs Within the Spectrum of Leaf Physiognomy. Annals of Botany, 2007, 100, 283-303.                             | 1.4              | 189          |
| 333 | Plasticity in mesophyll volume fraction modulates light-acclimation in needle photosynthesis in two pines. Tree Physiology, 2007, 27, 1137-1151.                                                                           | 1.4              | 57           |
| 334 | "Diminishing returns" in the scaling of functional leaf traits across and within species groups.<br>Proceedings of the National Academy of Sciences of the United States of America, 2007, 104, 8891-8896.                 | 3.3              | 177          |
| 335 | Process-based estimates of terrestrial ecosystem isoprene emissions: incorporating the effects of a<br>direct CO <sub>2</sub> -isoprene interaction. Atmospheric Chemistry and<br>Physics, 2007, 7, 31-53.                 | 1.9              | 276          |
| 336 | Salting-in and salting-out effects of ionic and neutral osmotica on limonene and linalool Henry's law constants and octanol/water partition coefficients. Chemosphere, 2007, 69, 621-629.                                  | 4.2              | 22           |
| 337 | Simultaneous growth and emission measurements demonstrate an interactive control of methanol release by leaf expansion and stomata. Journal of Experimental Botany, 2007, 58, 1783-1793.                                   | 2.4              | 178          |
| 338 | Fossil leaf economics quantified: calibration, Eocene case study, and implications. Paleobiology, 2007, 33, 574-589.                                                                                                       | 1.3              | 107          |
| 339 | Environmental controls over methanol emission from leaves. Biogeosciences, 2007, 4, 1083-1099.                                                                                                                             | 1.3              | 90           |
| 340 | Leaf shape and venation pattern alter the support investments within leaf lamina in temperate species:<br>a neglected source of leaf physiological differentiation?. Functional Ecology, 2007, 21, 28.                     | 1.7              | 128          |
| 341 | Major diffusion leaks of clampâ $\in$ on leaf cuvettes still unaccounted: how erroneous are the estimates of Farquhar <i>etâ<math>\in</math>fal</i> . model parameters?. Plant, Cell and Environment, 2007, 30, 1006-1022. | 2.8              | 119          |
| 342 | Structural and physiological plasticity in response to light and nutrients in five temperate deciduous woody species of contrasting shade tolerance. Functional Ecology, 2007, 21, 61.                                     | 1.7              | 137          |

| #   | Article                                                                                                                                                                                                                                                | IF  | CITATIONS |
|-----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 343 | Photosynthesis and resource distribution through plant canopies. Plant, Cell and Environment, 2007, 30, 1052-1071.                                                                                                                                     | 2.8 | 437       |
| 344 | The Architecture of Plant Crowns. Books in Soils, Plants, and the Environment, 2007, , .                                                                                                                                                               | 0.1 | 34        |
| 345 | TOLERANCE TO SHADE, DROUGHT, AND WATERLOGGING OF TEMPERATE NORTHERN HEMISPHERE TREES AND SHRUBS. Ecological Monographs, 2006, 76, 521-547.                                                                                                             | 2.4 | 863       |
| 346 | Interacting controls by light availability and nutrient supply on biomass allocation and growth of<br>Betula pendula and B. pubescens seedlings. Forest Ecology and Management, 2006, 227, 122-134.                                                    | 1.4 | 35        |
| 347 | Sizeâ€Dependent Variation in Shoot Lightâ€Harvesting Efficiency in Shadeâ€Intolerant Conifers.<br>International Journal of Plant Sciences, 2006, 167, 19-32.                                                                                           | 0.6 | 20        |
| 348 | Leaf size modifies support biomass distribution among stems, petioles and midâ€ribs in temperate plants.<br>New Phytologist, 2006, 171, 91-104.                                                                                                        | 3.5 | 180       |
| 349 | The controversy over traits conferring shade-tolerance in trees: ontogenetic changes revisited.<br>Journal of Ecology, 2006, 94, 464-470.                                                                                                              | 1.9 | 136       |
| 350 | Heat sensitivity of photosynthetic electron transport varies during the day due to changes in sugars and osmotic potential. Plant, Cell and Environment, 2006, 29, 212-228.                                                                            | 2.8 | 90        |
| 351 | Complex adjustments of photosynthetic potentials and internal diffusion conductance to current<br>and previous light availabilities and leaf age in Mediterranean evergreen species Quercus ilex. Plant,<br>Cell and Environment, 2006, 29, 1159-1178. | 2.8 | 151       |
| 352 | Emissions of monoterpenes linalool and ocimene respond differently to environmental changes due to differences in physico-chemical characteristics. Atmospheric Environment, 2006, 40, 4649-4662.                                                      | 1.9 | 67        |
| 353 | Structural determinants of leaf light-harvesting capacity and photosynthetic potentials. , 2006, , 385-419.                                                                                                                                            |     | 128       |
| 354 | Growth and production of a short rotation coppice culture of poplar. II. Clonal and year-to-year differences in leaf and petiole characteristics and stand leaf area index. Biomass and Bioenergy, 2005, 28, 536-547.                                  | 2.9 | 22        |
| 355 | Modulation of leaf economic traits and trait relationships by climate. Global Ecology and Biogeography, 2005, 14, 411-421.                                                                                                                             | 2.7 | 669       |
| 356 | Ozone induced emissions of biogenic VOC from tobacco: relationships between ozone uptake and emission of LOX products. Plant, Cell and Environment, 2005, 28, 1334-1343.                                                                               | 2.8 | 164       |
| 357 | Leaf internal diffusion conductance limits photosynthesis more strongly in older leaves of<br>Mediterranean evergreen broad-leaved species. Plant, Cell and Environment, 2005, 28, 1552-1566.                                                          | 2.8 | 245       |
| 358 | Light capture efficiency decreases with increasing tree age and size in the southern hemisphere gymnosperm Agathis australis. Trees - Structure and Function, 2005, 19, 177-190.                                                                       | 0.9 | 46        |
| 359 | Species differences in timing of leaf fall and foliage chemistry modify nutrient resorption efficiency in deciduous temperate forest stands. Tree Physiology, 2005, 25, 1001-1014.                                                                     | 1.4 | 95        |
| 360 | Key Plant Structural and Allocation Traits Depend on Relative Age in the Perennial Herb Pimpinella<br>saxifraga. Annals of Botany, 2005, 96, 323-330.                                                                                                  | 1.4 | 18        |

| #   | Article                                                                                                                                                                                                          | IF   | CITATIONS |
|-----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 361 | The Capacity for Thermal Protection of Photosynthetic Electron Transport Varies for Different<br>Monoterpenes in Quercus ilex. Plant Physiology, 2005, 139, 485-496.                                             | 2.3  | 118       |
| 362 | Leaf hydraulic conductance in relation to anatomical and functional traits during Populus tremula<br>leaf ontogeny. Tree Physiology, 2005, 25, 1409-1418.                                                        | 1.4  | 60        |
| 363 | Biomass allocation and growth rates in Pinus sylvestris are interactively modified by nitrogen and phosphorus availabilities and by tree size and age. Canadian Journal of Forest Research, 2005, 35, 2346-2359. | 0.8  | 31        |
| 364 | Light-acclimation of cladode photosynthetic potentials in Casuarina glauca: trade-offs between physiological and structural investments. Functional Plant Biology, 2005, 32, 571.                                | 1.1  | 13        |
| 365 | Temperature dependencies of Henry's law constants and octanol/water partition coefficients for key plant volatile monoterpenoids. Chemosphere, 2005, 61, 1390-1400.                                              | 4.2  | 98        |
| 366 | Co-limitation of plant primary productivity by nitrogen and phosphorus in a species-rich wooded meadow on calcareous soils. Acta Oecologica, 2005, 28, 345-356.                                                  | 0.5  | 95        |
| 367 | Leaf to Landscape. Ecological Studies, 2004, , 262-294.                                                                                                                                                          | 0.4  | 9         |
| 368 | Leaf to Landscape. Ecological Studies, 2004, , 207-227.                                                                                                                                                          | 0.4  | 2         |
| 369 | Constraints on light interception efficiency due to shoot architecture in broad-leaved Nothofagus species. Tree Physiology, 2004, 24, 617-630.                                                                   | 1.4  | 46        |
| 370 | Petiole length and biomass investment in support modify light interception efficiency in dense poplar plantations. Tree Physiology, 2004, 24, 141-154.                                                           | 1.4  | 76        |
| 371 | Within-canopy variation in the rate of development of photosynthetic capacity is proportional to integrated quantum flux density in temperate deciduous trees. Plant, Cell and Environment, 2004, 27, 293-313.   | 2.8  | 184       |
| 372 | Canopy gradients in leaf intercellular CO2 mole fractions revisited: interactions between leaf irradiance and water stress need consideration. Plant, Cell and Environment, 2004, 27, 569-583.                   | 2.8  | 51        |
| 373 | Adaptive adjustments to light in foliage and wholeâ€plant characteristics depend on relative age in the perennial herb Leontodon hispidus. New Phytologist, 2004, 162, 683-696.                                  | 3.5  | 40        |
| 374 | Acclimation of antioxidant pools to the light environment in a natural forest canopy. New<br>Phytologist, 2004, 163, 87-97.                                                                                      | 3.5  | 47        |
| 375 | The worldwide leaf economics spectrum. Nature, 2004, 428, 821-827.                                                                                                                                               | 13.7 | 6,489     |
| 376 | Photosynthetic Acclimation to Simultaneous and Interacting Environmental Stresses Along Natural<br>Light Gradients: Optimality and Constraints. Plant Biology, 2004, 6, 254-268.                                 | 1.8  | 208       |
| 377 | Development of Leaf Photosynthetic Parameters inBetula pendulaRoth Leaves: Correlations with Photosystem I Density. Plant Biology, 2004, 6, 307-318.                                                             | 1.8  | 27        |
| 378 | Drought acclimation of two deciduous tree species of different layers in a temperate forest canopy.<br>Trees - Structure and Function, 2004, 18, 93-101.                                                         | 0.9  | 48        |

| #   | Article                                                                                                                                                                                                                      | IF  | CITATIONS |
|-----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 379 | Leaf to Landscape. Ecological Studies, 2004, , 42-85.                                                                                                                                                                        | 0.4 | 76        |
| 380 | Spatial and age-dependent modifications of photosynthetic capacity in four Mediterranean oak species.<br>Functional Plant Biology, 2004, 31, 1179.                                                                           | 1.1 | 52        |
| 381 | Physiological and physicochemical controls on foliar volatile organic compound emissions. Trends<br>in Plant Science, 2004, 9, 180-186.                                                                                      | 4.3 | 405       |
| 382 | Leaf-level phenotypic variability and plasticity of invasive Rhododendron ponticum and non-invasive<br>Ilex aquifolium co-occurring at two contrasting European sites. Plant, Cell and Environment, 2003,<br>26, 941-956.    | 2.8 | 119       |
| 383 | Do the capacity and kinetics for modification of xanthophyll cycle pool size depend on growth irradiance in temperate trees?. Plant, Cell and Environment, 2003, 26, 1787-1801.                                              | 2.8 | 83        |
| 384 | Total foliar area and average leaf age may be more strongly associated with branching frequency than with leaf longevity in temperate conifers. New Phytologist, 2003, 158, 75-89.                                           | 3.5 | 51        |
| 385 | Controls on the emission of plant volatiles through stomata: Differential sensitivity of emission rates to stomatal closure explained. Journal of Geophysical Research, 2003, 108, .                                         | 3.3 | 154       |
| 386 | Controls on the emission of plant volatiles through stomata: A sensitivity analysis. Journal of<br>Geophysical Research, 2003, 108, .                                                                                        | 3.3 | 88        |
| 387 | Leaf structure vs. nutrient relationships vary with soil conditions in temperate shrubs and trees.<br>Acta Oecologica, 2003, 24, 209-219.                                                                                    | 0.5 | 87        |
| 388 | Three-dimensional lamina architecture alters light-harvesting efficiency in Fagus: a leaf-scale analysis.<br>Tree Physiology, 2003, 23, 577-589.                                                                             | 1.4 | 47        |
| 389 | Needle longevity, shoot growth and branching frequency in relation to site fertility and within-canopy light conditions in Pinus sylvestris. Annals of Forest Science, 2003, 60, 195-208.                                    | 0.8 | 64        |
| 390 | Stomatal conductance alone does not explain the decline in foliar photosynthetic rates with increasing tree age and size in Picea abies and Pinus sylvestris. Tree Physiology, 2002, 22, 515-535.                            | 1.4 | 204       |
| 391 | Stomatal Constraints May Affect Emission of Oxygenated Monoterpenoids from the Foliage of Pinus pinea. Plant Physiology, 2002, 130, 1371-1385.                                                                               | 2.3 | 96        |
| 392 | Rate of stomatal opening, shoot hydraulic conductance and photosynthetic characteristics in<br>relation to leaf abscisic acid concentration in six temperate deciduous trees. Tree Physiology, 2002,<br>22, 267-276.         | 1.4 | 48        |
| 393 | Dependence of needle architecture and chemical composition on canopy light availability in three<br>North American Pinus species with contrasting needle length. Tree Physiology, 2002, 22, 747-761.                         | 1.4 | 39        |
| 394 | Leaf Structural and Photosynthetic Characteristics, and Biomass Allocation to Foliage in Relation to<br>Foliar Nitrogen Content and Tree Size in Three Betula Species. Annals of Botany, 2002, 89, 191-204.                  | 1.4 | 53        |
| 395 | A model analysis of the effects of nonspecific monoterpenoid storage in leaf tissues on emission kinetics and composition in Mediterranean sclerophyllousQuercusspecies. Global Biogeochemical Cycles, 2002, 16, 57-1-57-26. | 1.9 | 60        |
| 396 | Modification of light-acclimation of Pinus sylvestris shoot architecture by site fertility. Agricultural and Forest Meteorology, 2002, 111, 121-140.                                                                         | 1.9 | 30        |

| #   | Article                                                                                                                                                                                                                                                   | IF  | CITATIONS |
|-----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 397 | Petiole mechanics, leaf inclination, morphology, and investment in support in relation to light availability in the canopy of Liriodendron tulipifera. Oecologia, 2002, 132, 21-33.                                                                       | 0.9 | 76        |
| 398 | Monoterpene emissions in relation to foliar photosynthetic and structural variables in<br>Mediterranean evergreen Quercus species. New Phytologist, 2002, 153, 243-256.                                                                                   | 3.5 | 92        |
| 399 | A model coupling foliar monoterpene emissions to leaf photosynthetic characteristics in<br>Mediterranean evergreen Quercus species. New Phytologist, 2002, 153, 257-275.                                                                                  | 3.5 | 127       |
| 400 | Leaf Biomechanics and Biomass Investment in Support in Relation to Long-Term Irradiance inFagus.<br>Plant Biology, 2002, 4, 523-534.                                                                                                                      | 1.8 | 12        |
| 401 | GLOBAL-SCALE CLIMATIC CONTROLS OF LEAF DRY MASS PER AREA, DENSITY, AND THICKNESS IN TREES AND SHRUBS. Ecology, 2001, 82, 453-469.                                                                                                                         | 1.5 | 699       |
| 402 | Site fertility and the morphological and photosynthetic acclimation of Pinus sylvestris needles to light. Tree Physiology, 2001, 21, 1231-1244.                                                                                                           | 1.4 | 122       |
| 403 | GLOBAL-SCALE CLIMATIC CONTROLS OF LEAF DRY MASS PER AREA, DENSITY, AND THICKNESS IN TREES AND SHRUBS. , 2001, 82, 453.                                                                                                                                    |     | 46        |
| 404 | Apparent Controls on Leaf Conductance by Soil Water Availability and via Lightâ€Acclimation of Foliage<br>Structural and Physiological Properties in a Mixed Deciduous, Temperate Forest. International<br>Journal of Plant Sciences, 1999, 160, 707-721. | 0.6 | 52        |
| 405 | Variability in Leaf Morphology and Chemical Composition as a Function of Canopy Light Environment<br>in Coexisting Deciduous Trees. International Journal of Plant Sciences, 1999, 160, 837-848.                                                          | 0.6 | 110       |
| 406 | Differences in chemical composition relative to functional differentiation between petioles and laminas of Fraxinus excelsior. Tree Physiology, 1999, 19, 39-45.                                                                                          | 1.4 | 24        |
| 407 | Biomass investment in leaf lamina versus lamina support in relation to growth irradiance and leaf size<br>in temperate deciduous trees. Tree Physiology, 1999, 19, 349-358.                                                                               | 1.4 | 56        |
| 408 | Energy requirement for foliage formation is not constant along canopy light gradients in temperate deciduous trees. New Phytologist, 1999, 141, 459-470.                                                                                                  | 3.5 | 34        |
| 409 | Research review. Components of leaf dry mass per area - thickness and density - alter leaf photosynthetic capacity in reverse directions in woody plants. New Phytologist, 1999, 144, 35-47.                                                              | 3.5 | 640       |
| 410 | A model of isoprene emission based on energetic requirements for isoprene synthesis and leaf<br>photosynthetic properties forLiquidambarandQuercus. Plant, Cell and Environment, 1999, 22, 1319-1335.                                                     | 2.8 | 236       |
| 411 | Shape of leaf photosynthetic electron transport versus temperature response curve is not constant along canopy light gradients in temperate deciduous trees. Plant, Cell and Environment, 1999, 22, 1497-1513.                                            | 2.8 | 99        |
| 412 | Interactive effects of nitrogen and phosphorus on the acclimation potential of foliage<br>photosynthetic properties of cork oak, Quercus suber, to elevated atmospheric CO 2 concentrations.<br>Global Change Biology, 1999, 5, 455-470.                  | 4.2 | 80        |
| 413 | Title is missing!. , 1998, 134, 1-11.                                                                                                                                                                                                                     |     | 52        |
| 414 | Adjustment of foliage structure and function to a canopy light gradient in two co-existing deciduous<br>trees. Variability in leaf inclination angles in relation to petiole morphology. Trees - Structure and<br>Function, 1998, 12, 446.                | 0.9 | 62        |

| #   | Article                                                                                                                                                                                                                                                      | IF  | CITATIONS |
|-----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 415 | Acclimation to high irradiance in temperate deciduous trees in the field: changes in xanthophyll cycle<br>pool size and in photosynthetic capacity along a canopy light gradient. Plant, Cell and Environment,<br>1998, 21, 1205-1218.                       | 2.8 | 91        |
| 416 | Distribution of leaf photosynthetic properties in tree canopies: comparison of species with different shade tolerance. Functional Ecology, 1998, 12, 472-479.                                                                                                | 1.7 | 92        |
| 417 | An analysis of light effects on foliar morphology, physiology, and light interception in temperate deciduous woody species of contrasting shade tolerance. Tree Physiology, 1998, 18, 681-696.                                                               | 1.4 | 320       |
| 418 | Stoichiometry of foliar carbon constituents varies along light gradients in temperate woody canopies: implications for foliage morphological plasticity. Tree Physiology, 1998, 18, 467-479.                                                                 | 1.4 | 117       |
| 419 | Growth of Young Trees of Acer platanoides and Quercus robur Along a Gap- Understory Continuum:<br>Interrelationships between Allometry, Biomass Partitioning, Nitrogen, and Shade Tolerance.<br>International Journal of Plant Sciences, 1998, 159, 318-330. | 0.6 | 70        |
| 420 | Energy requirement for foliage construction depends on tree size inyoung Picea abies trees. Trees -<br>Structure and Function, 1997, 11, 420-431.                                                                                                            | 0.9 | 7         |
| 421 | A model separating leaf structural and physiological effects on carbon gain along light gradients for<br>the shade-tolerant species Acer saccharum. Plant, Cell and Environment, 1997, 20, 845-866.                                                          | 2.8 | 531       |
| 422 | Role of foliar nitrogen in light harvesting and shade tolerance of four temperate deciduous woody species. Functional Ecology, 1997, 11, 518-531.                                                                                                            | 1.7 | 197       |
| 423 | Energy requirement for foliage construction depends on tree size in. Trees - Structure and Function, 1997, 11, 420.                                                                                                                                          | 0.9 | 14        |
| 424 | Changes in foliage distribution with relative irradiance and tree size: Differences between the saplings ofAcer platanoidesandQuercus robur. Ecological Research, 1996, 11, 269-281.                                                                         | 0.7 | 40        |
| 425 | Plant growth-form alters the relationship between foliar morphology and species shade-tolerance ranking in temperate woody taxa. Plant Ecology, 1996, 124, 145-153.                                                                                          | 1.2 | 19        |
| 426 | Leaf weight per area and leaf size of 85 Estonian woody species in relation to shade tolerance and<br>light availability. Forest Ecology and Management, 1994, 70, 1-10.                                                                                     | 1.4 | 139       |
| 427 | Variations in leaf morphometry and nitrogen concentration in Betula pendula Roth., Corylus avellana<br>L. and Lonicera xylosteum L Tree Physiology, 1993, 12, 311-318.                                                                                       | 1.4 | 101       |