Pradeep Kumar

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3869160/publications.pdf

Version: 2024-02-01

136950 233421 3,029 121 32 45 citations h-index g-index papers 140 140 140 2188 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Proline and proline-derived organocatalysts in the synthesis of heterocycles. , 2021, , 215-251.		1
2	Metal-free, Tf2NH-catalyzed 1, 6-conjugate addition of imidazopyridine to para-quinone methides: Easy access to C3-functionalized triarylmethane imidazopyridine. Tetrahedron, 2021, 101, 132510.	1.9	6
3	Total synthesis of (-)-2-methoxy-2-butenolide-3-cinnamate and its antimicrobial potentials. Natural Product Research, 2020, 35, 1-6.	1.8	0
4	Acidic Handle Assemble Heterogeneous Carbocatalyst for Facile Aliphatic Nucleophilic Fluorination. ChemistrySelect, 2019, 4, 10960-10964.	1.5	2
5	Regioselective Oneâ€Pot Synthesis of 3â€Fluoroâ€Imidazo[1,2â€a]pyridines from Styrene. Asian Journal of Organic Chemistry, 2019, 8, 2143-2148.	2.7	6
6	Tf ₂ NH catalyzed 1,6â€conjugate addition of 2â€hydroxyâ€ <i>p</i> â€quinone methides with <i>β</i> â€Functionalized Ketones: Access to 2,3,4,9â€Tetrahydroâ€1 <i>H</i> â€xanthenones and 4 <i>H</i> â€Chron Derivatives. European Journal of Organic Chemistry, 2019, 2019, 3127-3133.	m er e	16
7	Synthesis of heterogeneous Ru(<scp>ii</scp>)-1,2,3-triazole catalyst supported over SBA-15: application to the hydrogen transfer reaction and unusual highly selective 1,4-disubstituted triazole formation <i>via</i> multicomponent click reaction. Catalysis Science and Technology, 2018, 8, 3246-3259.	4.1	31
8	Unravelling the Nucleophilicity of Butenolides for 1,6-Conjugate Addition to $\langle i \rangle p \langle i \rangle$ -Quinone Methides: A Direct Access to Diversely Substituted Butenolide-Derived Diarylmethanes. Organic Letters, 2018, 20, 2787-2791.	4.6	31
9	First Total Synthesis of the Proposed Structure of Pandangolide 1. European Journal of Organic Chemistry, 2018, 2018, 3352-3364.	2.4	6
10	Harnessing Nucleophilicity of Allenol Ester with <i>p-</i> Quinone Methides via Gold Catalysis: Application to the Synthesis of Diarylmethine-Substituted Enones. Journal of Organic Chemistry, 2018, 83, 9353-9363.	3.2	15
11	Catalytic and Efficient Synthesis of Optically Active Terminal Epoxides and 1,2-Diols using a New Lanthanum Triflate Assisted C1-Symmetric Bimetallic Chiral Salen Cobalt Complex. Letters in Organic Chemistry, 2018, 15, 960-966.	0.5	1
12	Tri– <i>tert</i> â€Butanolamine as an Organic Promoter in Nucleophilic Fluorination. ChemistrySelect, 2017, 2, 118-122.	1.5	19
13	Unified Approach to Fused and Spirocyclic Oxindoles through Lewisâ€Acidâ€Promoted Opening of Spiroepoxyoxindoles with Allylsilanes: Application to the Formal Synthesis of (±)â€Physovenine. European Journal of Organic Chemistry, 2017, 2017, 2603-2609.	2.4	13
14	Transition metal catalysisâ€"a unique road map in the stereoselective synthesis of 1,3-polyols. Organic and Biomolecular Chemistry, 2017, 15, 733-761.	2.8	33
15	Tf2NH-Catalyzed 1,6-Conjugate Addition of Vinyl Azides with p-Quinone Methides: A Mild and Efficient Method for the Synthesis of \hat{I}^2 -Bis-Arylamides. Synthesis, 2017, 49, 5224-5230.	2.3	12
16	Highly active recyclable SBA-15-EDTA-Pd catalyst for Mizoroki-Heck, Stille and Kumada C–C coupling reactions. Journal of Porous Materials, 2017, 24, 837-846.	2.6	16
17	Enantioselective Modular Total Synthesis of Macrolides Sch725674 and Câ€4â€∢i>epi⟨/i>â€Sch725674. European Journal of Organic Chemistry, 2016, 2016, 1215-1226.	2.4	11
18	CeCl ₃ â<7H ₂ Oâ€Nal Promoted Regioselective Sulfenylation of Indoles with Sulfonylhydrazides. ChemistrySelect, 2016, 1, 81-85.	1.5	14

#	Article	IF	Citations
19	Synthesis of Ophiocerins A, B and C, Botryolide E, Decarestrictine O, Stagonolide C and 9â€∢i>epi∢/i>â€Stagonolide C Employing Chiral Hexaneâ€1,2,3,5â€tetraol Derivatives as Building Blocks. European Journal of Organic Chemistry, 2016, 2016, 4696-4710.	2.4	8
20	Total synthesis of (\hat{a}^2) - $(6R,11R,14S)$ -colletallol via proline catalyzed \hat{l} ±-aminoxylation and Yamaguchi macrolactonization. RSC Advances, 2016, 6, 63607-63612.	3.6	6
21	Modular Synthesis of Biarylâ€Substituted Phosphine Ligands: Application in Microwaveâ€Assisted Palladiumâ€Catalyzed C–N Crossâ€Coupling Reactions. European Journal of Organic Chemistry, 2015, 2015, 6515-6525.	2.4	20
22	A stereocontrolled synthesis of Hagen's gland lactones via iterative proline catalyzed α-aminoxylation and oxa-Michael addition reactions. RSC Advances, 2015, 5, 61000-61005.	3.6	7
23	Total synthesis of (+)-petromyroxol via tandem α-aminoxylation–allylation and asymmetric dihydroxylation–S _N 2 cyclization approach. RSC Advances, 2015, 5, 63311-63317.	3.6	15
24	Nucleophilic fluorination using imidazolium based ionic liquid bearing tert-alcohol moiety. New Journal of Chemistry, 2015, 39, 4368-4374.	2.8	22
25	Dinuclear salen cobalt complex incorporating Y(OTf) ₃ : enhanced enantioselectivity in the hydrolytic kinetic resolution of epoxides. RSC Advances, 2015, 5, 82699-82703.	3.6	9
26	Clay-Supported Copper Nitrate (Claycop): A Mild Reagent for the Selective Nitration of Aromatic Olefins. Synlett, 2014, 25, 1997-2000.	1.8	17
27	A Concise Organocatalytic Route to Protected (2S,4R)-4-Hydroxyornithine and (+)-Pseudohygroline. Synlett, 2014, 25, 1089-1092.	1.8	8
28	Organocatalytic stereoselective approach to the total synthesis of (â^')-halosaline. RSC Advances, 2014, 4, 3238-3244.	3.6	17
29	A stereoselective approach to indolizidine and pyrrolizidine alkaloids: total synthesis of (â^')-lentiginosine, (â^')-epi-lentiginosine and (â^')-dihydroxypyrrolizidine. Organic and Biomolecular Chemistry, 2014, 12, 4454-4460.	2.8	21
30	Flexible, polymer-supported synthesis of sphingosine derivatives provides ceramides with enhanced biological activity. Bioorganic and Medicinal Chemistry, 2014, 22, 5506-5512.	3.0	6
31	Stereoselective Approach to 2,6â€Disubstituted Piperidinâ€3â€ol: Synthesis of (–)â€Deoxoprosopinine and (+)â€Deoxoprosophylline. European Journal of Organic Chemistry, 2014, 2014, 4897-4902.	2.4	10
32	Proline-Catalyzed Asymmetric Synthesis of <i>syn</i> and <i>anti</i> -1,3-Diamines. Journal of Organic Chemistry, 2013, 78, 11756-11764.	3.2	22
33	Proline Catalyzed α-Aminoxylation Reaction in the Synthesis of Biologically Active Compounds. Accounts of Chemical Research, 2013, 46, 289-299.	15.6	79
34	Asymmetric routes to pentadec-1-en-4-ol: application to the syntheses of aculeatins F and epi-F, (R)- and (S)-5-hexadecanolide and a formal synthesis of solenopsin. Tetrahedron: Asymmetry, 2013, 24, 305-314.	1.8	11
35	A Desymmetrization Approach to the Enantiopure <i>syn/anti</i> â€1,5â€Diols <i>via</i> Hydrolytic Kinetic Resolution (HKR) of Functionalized <i>meso</i> â€Bisâ€Epoxides: Further Elaboration to contact to the Formal Synthesis of Cryptocarya Diacetate. Advanced Synthesis and Catalysis. 2013. 355, 1719-1723.	4.3	7
36	Synthesis of indolizidine, pyrrolizidine and quinolizidine ring systems by proline-catalyzed sequential α-amination and HWE olefination of an aldehyde. RSC Advances, 2013, 3, 18288.	3.6	22

3

#	Article	IF	CITATIONS
37	Total Synthesis of Umuravumbolide and Hyptolide Through Siliconâ€Tethered Ringâ€Closing Metathesis. European Journal of Organic Chemistry, 2013, 2013, 4586-4593.	2.4	11
38	First total synthesis of seimatopolide B. RSC Advances, 2012, 2, 11231.	3.6	9
39	Formal synthesis of tetrahydrolipstatin and tetrahydroesterastin. Tetrahedron: Asymmetry, 2012, 23, 884-890.	1.8	9
40	Enantio- and diastereocontrolled conversion of chiral epoxides to trans-cyclopropane carboxylates: application to the synthesis of cascarillic acid, grenadamide and <scp>l</scp> -(â^')-CCG-II. Organic and Biomolecular Chemistry, 2012, 10, 6987-6994.	2.8	20
41	Synthesis of (R)-Selegiline via Hydrolytic Kinetic Resolution. Synthetic Communications, 2011, 41, 1301-1308.	2.1	8
42	Stereoselective synthesis of ophiocerins A and C. Tetrahedron: Asymmetry, 2011, 22, 1212-1217.	1.8	10
43	An asymmetric dihydroxylation route to (â^')-bulgecinine. Tetrahedron: Asymmetry, 2011, 22, 1234-1238.	1.8	6
44	An organocatalytic route to the synthesis of (6S)-5,6-dihydro-6-[(2R)-2-hydroxy-6-phenylhexyl]-2H-pyran-2-one and ravensara lactones. Tetrahedron: Asymmetry, 2011, 22, 1749-1756.	1.8	13
45	Enantio―and Diastereocontrolled Total Synthesis of (+)â€Strictifolione. European Journal of Organic Chemistry, 2010, 2010, 6993-7004.	2.4	21
46	Synthesis of (â^')-galantinic acid via iterative hydrolytic kinetic resolution and tethered aminohydroxylation. Tetrahedron, 2010, 66, 3159-3164.	1.9	7
47	An organocatalytic route to the synthesis of lactone moiety of compactin and mevinolin. Tetrahedron Letters, 2010, 51, 5838-5839.	1.4	6
48	Highly Selective Claisen–Schmidt Condensation Catalyzed by Silica Chloride Under Solvent-Free Reaction Conditions. Synthetic Communications, 2010, 40, 2887-2896.	2.1	23
49	Enantioselective Synthesis of <i>syn</i> /i>/ci>anti-1,3-Amino Alcohols via Proline-Catalyzed Sequential α-Aminoxylation/ \hat{l} ±-Amination and Hornerâ Wadsworthâ Emmons Olefination of Aldehydes. Organic Letters, 2010, 12, 2762-2765.	4.6	50
50	A general and concise asymmetric synthesis of sphingosine, safingol and phytosphingosines <i>via </i> tethered aminohydroxylation. Organic and Biomolecular Chemistry, 2010, 8, 5074-5086.	2.8	33
51	Iterative Approach to Enantiopure syn/anti-1,3-Polyols via Proline-Catalyzed Sequential α-Aminoxylation and Hornerâ^'Wadsworthâ^'Emmons Olefination of Aldehydes. Organic Letters, 2009, 11, 2611-2614.	4.6	56
52	Hydrolytic Kinetic Resolution as an Emerging Tool in the Synthesis of Bioactive Molecules. Synlett, 2009, 2009, 1367-1382.	1.8	41
53	A tethered aminohydroxylation route to l-arabino-[2R,3S,4R] and l-xylo-[2R,3S,4S]-C18-phytosphingosines. Tetrahedron Letters, 2009, 50, 3425-3427.	1.4	17
54	A facile synthesis of 5,6-dihydro-5-hydroxy-2(1H)-pyridone. Tetrahedron Letters, 2009, 50, 2440-2442.	1.4	5

#	Article	IF	Citations
55	A general approach to medium-sized ring ethers via hydrolytic and oxidative kinetic resolutions: stereoselective syntheses of (â^')-cis-lauthisan and (+)-isolaurepan. Tetrahedron, 2009, 65, 2226-2231.	1.9	30
56	A novel synthesis of coumarins employing triphenyl (\hat{l}_{\pm} -carboxymethylene) phosphorane imidazolide as a C-2 synthon. Tetrahedron Letters, 2009, 50, 236-238.	1.4	32
57	First asymmetric total synthesis of aspinolide A. Tetrahedron Letters, 2009, 50, 7018-7020.	1.4	34
58	Enantioselective synthesis of decarestrictine J. Tetrahedron Letters, 2009, 50, 7188-7190.	1.4	14
59	Yttria-Zirconia–Based Lewis Acid Catalysis of the Biginelli Reaction: An Efficient One-Pot Synthesis of 3,4-Dihydropyrimidin-2-(1 <i>H</i>)-ones. Synthetic Communications, 2009, 39, 1299-1309.	2.1	21
60	A total synthesis of (+)-isolaurepan. Tetrahedron Letters, 2008, 49, 7012-7014.	1.4	16
61	Synthesis of α-Amino Phosphonates by Three Component Condensation of Carbonyl Compound, Amine, and Dialkyl Phosphite Using Yttria-zirconia Based Lewis Acid Catalyst. Catalysis Letters, 2008, 125, 315-319.	2.6	13
62	An Efficient Total Synthesis of Decarestrictine D. European Journal of Organic Chemistry, 2008, 2008, 1195-1202.	2.4	47
63	A concise synthesis of protected (2S,4R)-4-hydroxyornithine. Tetrahedron Letters, 2008, 49, 3297-3299.	1.4	17
64	Multi-component carbon–carbon bond forming Mannich reaction catalyzed by yttria–zirconia based Lewis acid. Catalysis Communications, 2008, 9, 2445-2448.	3.3	14
65	Dimethyl Sulfoxide Pivaloyl Chloride: A New Reagent for Oxidation of Alcohols to Carbonyls. Synthetic Communications, 2008, 38, 746-753.	2.1	12
66	Efficient Total Synthesis of (–)-(3S,6R)-3,6-Dihydroxy-10-methylundecanoic Acid. European Journal of Organic Chemistry, 2007, 2007, 369-373.	2.4	9
67	Application of hydrolytic kinetic resolution (HKR) in the synthesisÂof bioactive compounds. Tetrahedron, 2007, 63, 2745-2785.	1.9	96
68	Enantioselective syntheses of (\hat{a}^{*})-pinellic acid, \hat{l}_{\pm} - and \hat{l}^{2} -dimorphecolic acid. Tetrahedron, 2007, 63, 7624-7633.	1.9	27
69	Enantioselective synthesis of (+)-l-733,060. Tetrahedron: Asymmetry, 2007, 18, 982-987.	1.8	32
70	Formal synthesis of herbarumin III. Tetrahedron: Asymmetry, 2007, 18, 1688-1692.	1.8	21
71	Enantioselective synthesis of (â^')-pinellic acid. Tetrahedron Letters, 2007, 48, 2279-2282.	1.4	11
72	A simple and efficient approach to 1,3-aminoalcohols: application to the synthesis of (+)-negamycin. Tetrahedron Letters, 2007, 48, 3793-3796.	1.4	24

#	Article	IF	Citations
73	Enantio- and Diastereocontrolled Total Synthesis of (+)-Boronolide. Journal of Organic Chemistry, 2006, 71, 3935-3941.	3.2	67
74	An asymmetric aminohydroxylation route to cis-2,6-disubstituted piperidine-3-ol: application to the synthesis of $(\hat{a}^{"})$ -deoxocassine. Tetrahedron, 2006, 62, 9942-9948.	1.9	27
75	Enantioselective synthesis of (2R,3R)- and (2S,3S)-Î ² -hydroxyornithine. Tetrahedron Letters, 2006, 47, 4167-4169.	1.4	8
76	A Simple and Efficient Approach to 1,3-Polyols: Application to the Synthesis of Cryptocarya Diacetate. Chemistry - A European Journal, 2006, 12, 1397-1402.	3.3	73
77	An asymmetric aminohydroxylation route to (+)-l-733,060. Tetrahedron: Asymmetry, 2005, 16, 3579-3583.	1.8	18
78	Stereoselective synthesis of (+)-boronolide. Tetrahedron Letters, 2005, 46, 2129-2131.	1.4	26
79	Stereoselective syntheses of (+)-α- and (â°')-β-conhydrine from L-aspartic acid. Tetrahedron Letters, 2005, 46, 4091-4093.	1.4	34
80	Enantioselective synthesis of tarchonanthuslactone via iterative hydrolytic kinetic resolution. Tetrahedron Letters, 2005, 46, 6571-6573.	1.4	32
81	Efficient total synthesis of iso-cladospolide B and cladospolide B. Tetrahedron Letters, 2005, 46, 6625-6627.	1.4	40
82	Efficient Total Synthesis of Sapinofuranone B. Journal of Organic Chemistry, 2005, 70, 2843-2846.	3.2	63
83	Asymmetric Synthesis of Both the Enantiomers oftrans-3-Hydroxypipecolic Acidâ€. Journal of Organic Chemistry, 2005, 70, 360-363.	3.2	55
84	Total Synthesis of Microcarpalideâ€. Journal of Organic Chemistry, 2005, 70, 4207-4210.	3.2	48
85	Wittig–Horner Approach for the Synthesis of Tamoxifen. Synthetic Communications, 2005, 35, 2795-2800.	2.1	10
86	A facile procedure for tert-butoxycarbonylation of amines promoted by yttria-zirconia based strong Lewis acid catalyst. Arkivoc, 2005, 2002, 28-33.	0.5	46
87	Synthesis of βâ€Keto Esters Promoted by Yttriaâ€Zirconia Based Lewis Acid Catalyst. Synthetic Communications, 2004, 34, 1117-1123.	2.1	8
88	A practical enantioselective synthesis of massoialactone via hydrolytic kinetic resolution. Tetrahedron Letters, 2004, 45, 849-851.	1.4	68
89	An efficient stereoselective synthesis of (2S,3S)-3-hydroxy-2-phenylpiperidine. Tetrahedron Letters, 2004, 45, 987-988.	1.4	16
90	Application of the asymmetric aminohydroxylation reaction for the syntheses of HIV-protease inhibitor, hydroxyethylene dipeptide isostere and \hat{I}^3 -amino acid derivative. Tetrahedron Letters, 2004, 45, 5477-5479.	1.4	41

#	Article	IF	Citations
91	Enantioselective synthesis of (â^²)-galantinic acid. Tetrahedron Letters, 2004, 45, 5877-5879.	1.4	34
92	An asymmetric dihydroxylation route to (2S,3S)-3-hydroxypipecolic acid. Tetrahedron Letters, 2004, 45, 8461-8463.	1.4	27
93	An efficient total synthesis of sulfobacin A. Tetrahedron Letters, 2004, 45, 9641-9643.	1.4	13
94	Synthesis of (â^')â€Mintlactone via Intramolecular Wittigâ€"Horner Reaction. Synthetic Communications, 2004, 34, 2323-2329.	2.1	9
95	Enantioselective synthesis of d-ribo-(2S,3S,4R)-C18-phytosphingosine using double stereodifferentiation. Tetrahedron Letters, 2003, 44, 1035-1037.	1.4	40
96	Enantioselective synthesis of (\hat{a}^{-2}) - \hat{l} ±-conhydrine via cyclic sulfate methodology. Tetrahedron Letters, 2003, 44, 1957-1958.	1.4	46
97	An asymmetric dihydroxylation route to (S)-oxybutynin. Tetrahedron Letters, 2003, 44, 4231-4232.	1.4	50
98	Synthesis of novel chiral spirodione, (6R,7R)-7-phenyl-1-oxaspiro[5.5]undec-3-ene-2,5-dione: application to the asymmetric Diels–Alder reaction with high l€-facial selectivity. Tetrahedron Letters, 2003, 44, 5015-5017.	1.4	10
99	Asymmetric synthesis of (â^')-acaterin. Tetrahedron Letters, 2003, 44, 6149-6151.	1.4	32
100	Synthesis of Carbamates Using Yttria-Zirconia Based Lewis Acid Catalyst. Synthetic Communications, 2003, 33, 4019-4027.	2.1	25
101	Facile and Selective Deprotection of Allyl Esters Catalyzed by H- \hat{l}^2 Zeolite. Synthetic Communications, 2003, 33, 3017-3024.	2.1	6
102	A Concise Synthesis of (+)-Compactin Lactone by Asymmetric Dihydroxylation and Regioselective Cyclic Sulfite Opening Reactions. European Journal of Organic Chemistry, 2002, 2002, 2921-2923.	2.4	23
103	Acylation of alcohols, thiols and amines with carboxylic acids catalyzed by yttria–zirconia-based Lewis acid. Journal of Molecular Catalysis A, 2002, 181, 207-213.	4.8	59
104	An asymmetric dihydroxylation route to enantiomerically pure norfluoxetine and fluoxetine. Tetrahedron Letters, 2002, 43, 4425-4426.	1.4	60
105	A new synthesis of 4H-1-benzothiopyran-4-ones using (trimethylsilyl)methylenetriphenylphosphorane. Tetrahedron, 2001, 57, 9755-9758.	1.9	36
106	Yttria-Zirconia Based Lewis Acid: An Efficient and Chemoselective Catalyst for Acylation Reactions. Synlett, 2001, 2001, 0206-0209.	1.8	61
107	A Stereoselective Synthesis of Dihydrosphingosine. European Journal of Organic Chemistry, 2000, 2000, 3447-3449.	2.4	43
108	Double stereodifferentiation in asymmetric dihydroxylation: application to the first diastereoselective synthesis of l-xylo-[2R,3S,4S]-C18-phytosphingosine. Tetrahedron Letters, 2000, 41, 10309-10312.	1.4	45

#	Article	IF	CITATIONS
109	A Facile and Selective Procedure for Transesterification of \hat{l}^2 -Keto Esters Promoted by Yttria-Zirconia Based Lewis Acid Catalyst. Synlett, 2000, 2000, 251-253.	1.8	29
110	An efficient synthesis of 5-hydroxy-2(5H)-furanone. Green Chemistry, 2000, 2, 29-32.	9.0	35
111	A Novel Synthesis of 4H-Chromen-4-ones via Intramolecular Wittig Reaction. Organic Letters, 2000, 2, 3821-3823.	4.6	73
112	A Stereoselective Synthesis of Dihydrosphingosine. European Journal of Organic Chemistry, 2000, 2000, 3447-3449.	2.4	2
113	Efficient Regioselective Oxetane Formation During Photochemical Transformation of spiro[4. n]-2,5-diones. Synthetic Communications, 1999, 29, 3263-3273.	2.1	1
114	Enantioselective synthesis of (R)- (\hat{a}^{*}) -mevalonolactone via cyclic sulfate methodology. Tetrahedron: Asymmetry, 1999, 10, 4349-4356.	1.8	30
115	A short and efficient stereoselective synthesis of dihydrosphingosine triacetate. Tetrahedron: Asymmetry, 1999, 10, 4797-4802.	1.8	32
116	Asymmetric synthesis of (S) - Massoialactone. Tetrahedron, 1999, 55, 13445-13450.	1.9	46
117	Facile synthesis of unsaturated lactones via intramolecular Wittig reaction. Tetrahedron, 1998, 54, 2161-2168.	1.9	21
118	An Yttrium-Based Strong Lewis Acid for the Heterogeneous Catalysis of the Diels–Alder Reaction. Angewandte Chemie International Edition in English, 1995, 34, 2143-2145.	4.4	19
119	An efficient synthesis of quinolones using N-phenyl(triphenylphosphoranylidene)ethenimine. Tetrahedron Letters, 1994, 35, 9229-9232.	1.4	16
120	Chemoselective Reduction of Vinylogous Thioesters of Thiochromones. Synthetic Communications, 1994, 24, 3297-3306.	2.1	24
121	An efficient approach to the synthesis of 4H-1-benzothiopyran-4-ones via intramolecular Wittig reaction. Journal of the Chemical Society Chemical Communications, 1992, , 1580.	2.0	12