## Theodore M Kamenecka

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3868952/publications.pdf

Version: 2024-02-01



| #  | Article                                                                                                                                                                                                      | IF   | CITATIONS |
|----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 1  | Regulation of circadian behaviour and metabolism by synthetic REV-ERB agonists. Nature, 2012, 485, 62-68.                                                                                                    | 27.8 | 638       |
| 2  | Antidiabetic actions of a non-agonist PPARÎ <sup>3</sup> ligand blocking Cdk5-mediated phosphorylation. Nature, 2011, 477, 477-481.                                                                          | 27.8 | 484       |
| 3  | Suppression of TH17 differentiation and autoimmunity by a synthetic ROR ligand. Nature, 2011, 472, 491-494.                                                                                                  | 27.8 | 446       |
| 4  | Partial Agonists Activate PPARÎ <sup>3</sup> Using a Helix 12 Independent Mechanism. Structure, 2007, 15, 1258-1271.                                                                                         | 3.3  | 321       |
| 5  | The Secreted Enzyme PM20D1 Regulates Lipidated Amino Acid Uncouplers of Mitochondria. Cell, 2016, 166, 424-435.                                                                                              | 28.9 | 188       |
| 6  | Selective Chemical Inhibition of PGC-1α Gluconeogenic Activity Ameliorates Type 2 Diabetes. Cell, 2017, 169, 148-160.e15.                                                                                    | 28.9 | 153       |
| 7  | Identification of SR8278, a Synthetic Antagonist of the Nuclear Heme Receptor REV-ERB. ACS Chemical<br>Biology, 2011, 6, 131-134.                                                                            | 3.4  | 152       |
| 8  | An alternate binding site for PPARÎ <sup>3</sup> ligands. Nature Communications, 2014, 5, 3571.                                                                                                              | 12.8 | 148       |
| 9  | Ligand and Receptor Dynamics Contribute to the Mechanism of Graded PPARÎ <sup>3</sup> Agonism. Structure, 2012, 20, 139-150.                                                                                 | 3.3  | 133       |
| 10 | Identification of SR2211: A Potent Synthetic RORÎ <sup>3</sup> -Selective Modulator. ACS Chemical Biology, 2012, 7,<br>672-677.                                                                              | 3.4  | 126       |
| 11 | Regulation of Adipogenesis by Natural and Synthetic REV-ERB Ligands. Endocrinology, 2010, 151, 3015-3025.                                                                                                    | 2.8  | 115       |
| 12 | Pharmacological repression of PPARÎ <sup>3</sup> promotes osteogenesis. Nature Communications, 2015, 6, 7443.                                                                                                | 12.8 | 99        |
| 13 | Pharmacological targeting of the mammalian clock regulates sleep architecture and emotional behaviour. Nature Communications, 2014, 5, 5759.                                                                 | 12.8 | 98        |
| 14 | Pharmacologic Repression of Retinoic Acid Receptor–Related Orphan Nuclear Receptor γ Is Therapeutic<br>in the Collagenâ€Induced Arthritis Experimental Model. Arthritis and Rheumatology, 2014, 66, 579-588. | 5.6  | 81        |
| 15 | Habenular TCF7L2 links nicotine addiction to diabetes. Nature, 2019, 574, 372-377.                                                                                                                           | 27.8 | 81        |
| 16 | REV-ERBα Regulates TH17 Cell Development and Autoimmunity. Cell Reports, 2018, 25, 3733-3749.e8.                                                                                                             | 6.4  | 78        |
| 17 | Suppression of atherosclerosis by synthetic REV-ERB agonist. Biochemical and Biophysical Research Communications, 2015, 460, 566-571.                                                                        | 2.1  | 73        |
| 18 | ROR Inverse Agonist Suppresses Insulitis and Prevents Hyperglycemia in a Mouse Model of Type 1<br>Diabetes. Endocrinology, 2015, 156, 869-881.                                                               | 2.8  | 60        |

| #  | Article                                                                                                                                                                                                     | IF    | CITATIONS |
|----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|-----------|
| 19 | The nuclear receptor REV-ERBα modulates Th17 cell-mediated autoimmune disease. Proceedings of the<br>National Academy of Sciences of the United States of America, 2019, 116, 18528-18536.                  | 7.1   | 60        |
| 20 | Siteâ€Selective γ (sp <sup>3</sup> )â^'H and γ (sp <sup>2</sup> )â^'H Arylation of Free Amino Esters Pror<br>by a Catalytic Transient Directing Group. Chemistry - A European Journal, 2018, 24, 9535-9541. | noted | 54        |
| 21 | Defining a conformational ensemble that directs activation of PPARÎ <sup>3</sup> . Nature Communications, 2018, 9, 1794.                                                                                    | 12.8  | 53        |
| 22 | Native Directed Site-Selective δ-C(sp <sup>3</sup> )–H and δ-C(sp <sup>2</sup> )–H Arylation of Primary<br>Amines. ACS Catalysis, 2019, 9, 4887-4891.                                                       | 11.2  | 49        |
| 23 | Synthetic RORÎ <sup>3</sup> t Agonists Enhance Protective Immunity. ACS Chemical Biology, 2016, 11, 1012-1018.                                                                                              | 3.4   | 48        |
| 24 | Dipyridyl amides: potent metabotropic glutamate subtype 5 (mGlu5) receptor antagonists. Bioorganic<br>and Medicinal Chemistry Letters, 2005, 15, 1197-1200.                                                 | 2.2   | 46        |
| 25 | PPARÎ <sup>3</sup> in Complex with an Antagonist and Inverse Agonist: a Tumble and Trap Mechanism of the Activation Helix. IScience, 2018, 5, 69-79.                                                        | 4.1   | 40        |
| 26 | An Accessory Agonist Binding Site Promotes Activation of α4β2* Nicotinic Acetylcholine Receptors.<br>Journal of Biological Chemistry, 2015, 290, 13907-13918.                                               | 3.4   | 38        |
| 27 | A structural mechanism for directing corepressor-selective inverse agonism of PPARÎ <sup>3</sup> . Nature<br>Communications, 2018, 9, 4687.                                                                 | 12.8  | 38        |
| 28 | Modification of the Orthosteric PPARÎ <sup>3</sup> Covalent Antagonist Scaffold Yields an Improved Dual-Site<br>Allosteric Inhibitor. ACS Chemical Biology, 2017, 12, 969-978.                              | 3.4   | 36        |
| 29 | Inhibitors of c-jun-N-Terminal Kinase (JNK). Mini-Reviews in Medicinal Chemistry, 2008, 8, 755-766.                                                                                                         | 2.4   | 35        |
| 30 | 3,5-Disubstituted quinolines as novel c-Jun N-terminal kinase inhibitors. Bioorganic and Medicinal Chemistry Letters, 2007, 17, 6378-6382.                                                                  | 2.2   | 34        |
| 31 | Assessment of NR4A Ligands That Directly Bind and Modulate the Orphan Nuclear Receptor Nurr1.<br>Journal of Medicinal Chemistry, 2020, 63, 15639-15654.                                                     | 6.4   | 34        |
| 32 | Antiobesity Effect of a Small Molecule Repressor of ROR <i>γ</i> . Molecular Pharmacology, 2015, 88, 48-56.                                                                                                 | 2.3   | 33        |
| 33 | Complexes of the neurotensin receptor 1 with small-molecule ligands reveal structural determinants of full, partial, and inverse agonism. Science Advances, 2021, 7, .                                      | 10.3  | 32        |
| 34 | Development of novel NEMO-binding domain mimetics for inhibiting IKK/NF-κB activation. PLoS Biology, 2018, 16, e2004663.                                                                                    | 5.6   | 29        |
| 35 | Small molecule amides as potent ROR-Î <sup>3</sup> selective modulators. Bioorganic and Medicinal Chemistry Letters, 2013, 23, 532-536.                                                                     | 2.2   | 28        |
| 36 | Synthesis of 2-aryl-2H-tetrazoles via a regioselective [3+2] cycloaddition reaction. Tetrahedron Letters, 2016, 57, 1597-1599.                                                                              | 1.4   | 27        |

Theodore M Kamenecka

| #  | Article                                                                                                                                                                                                                                                                                                                              | IF            | CITATIONS |
|----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------|-----------|
| 37 | Genetic and pharmacological inhibition of the nuclear receptor RORα regulates TH17 driven inflammatory disorders. Nature Communications, 2021, 12, 76.                                                                                                                                                                               | 12.8          | 27        |
| 38 | Synthesis and SAR of piperazine amides as novel c-jun N-terminal kinase (JNK) inhibitors. Bioorganic and<br>Medicinal Chemistry Letters, 2009, 19, 3344-3347.                                                                                                                                                                        | 2.2           | 25        |
| 39 | Synthesis and SAR of novel isoxazoles as potent c-jun N-terminal kinase (JNK) inhibitors. Bioorganic<br>and Medicinal Chemistry Letters, 2014, 24, 161-164.                                                                                                                                                                          | 2.2           | 24        |
| 40 | N-Arylsulfonyl Indolines as Retinoic Acid Receptor-Related Orphan Receptorâ€Î³ (RORγ) Agonists.<br>ChemMedChem, 2016, 11, 2607-2620.                                                                                                                                                                                                 | 3.2           | 24        |
| 41 | Probing the Complex Binding Modes of the PPARÎ <sup>3</sup> Partial Agonist<br>2-Chloro- <i>N</i> -(3-chloro-4-((5-chlorobenzo[ <i>d</i> ]thiazol-2-yl)thio)phenyl)-4-(trifluoromethyl)benzenesulfor<br>(T2384) to Orthosteric and Allosteric Sites with NMR Spectroscopy. Journal of Medicinal Chemistry,<br>2016, 59, 10335-10341. | namjde<br>6.4 | 24        |
| 42 | Unorthodox Acetylcholine Binding Sites Formed by α5 and β3 Accessory Subunits in α4β2* Nicotinic<br>Acetylcholine Receptors. Journal of Biological Chemistry, 2016, 291, 23452-23463.                                                                                                                                                | 3.4           | 24        |
| 43 | Chemical Crosslinking Mass Spectrometry Reveals the Conformational Landscape of the Activation Helix of PPARÎ <sup>3</sup> ; a Model for Ligand-Dependent Antagonism. Structure, 2018, 26, 1431-1439.e6.                                                                                                                             | 3.3           | 24        |
| 44 | Novel small molecule inhibition of IKK/NFâ€r̂B activation reduces markers of senescence and improves healthspan in mouse models of aging. Aging Cell, 2021, 20, e13486.                                                                                                                                                              | 6.7           | 24        |
| 45 | Synthesis and SAR of tetrahydroisoquinolines as Rev-erbα agonists. Bioorganic and Medicinal<br>Chemistry Letters, 2012, 22, 3739-3742.                                                                                                                                                                                               | 2.2           | 22        |
| 46 | Structure–Activity Relationship of<br>2,4-Dichloro- <i>N</i> -(3,5-dichloro-4-(quinolin-3-yloxy)phenyl)benzenesulfonamide (INT131) Analogs for<br>PPARγ-Targeted Antidiabetics. Journal of Medicinal Chemistry, 2017, 60, 4584-4593.                                                                                                 | 6.4           | 22        |
| 47 | Quantitative structural assessment of graded receptor agonism. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 22179-22188.                                                                                                                                                              | 7.1           | 21        |
| 48 | Discovery of Hydrolysis-Resistant Isoindoline <i>N</i> -Acyl Amino Acid Analogues that Stimulate<br>Mitochondrial Respiration. Journal of Medicinal Chemistry, 2018, 61, 3224-3230.                                                                                                                                                  | 6.4           | 20        |
| 49 | Definition of functionally and structurally distinct repressive states in the nuclear receptor PPARγ.<br>Nature Communications, 2019, 10, 5825.                                                                                                                                                                                      | 12.8          | 20        |
| 50 | Neuron-based high-content assay and screen for CNS active mitotherapeutics. Science Advances, 2020,<br>6, eaaw8702.                                                                                                                                                                                                                  | 10.3          | 20        |
| 51 | Pharmacological modulation and genetic deletion of REV-ERBα and REV-ERBÎ <sup>2</sup> regulates dendritic cell development. Biochemical and Biophysical Research Communications, 2020, 527, 1000-1007.                                                                                                                               | 2.1           | 20        |
| 52 | Synthesis and SAR of 4-(pyrazol-3-yl)-pyridines as novel c-jun N-terminal kinase inhibitors. Bioorganic and Medicinal Chemistry Letters, 2011, 21, 2732-2735.                                                                                                                                                                        | 2.2           | 18        |
| 53 | Synthesis and activity of substituted heteroaromatics as positive allosteric modulators for α4β2α5<br>nicotinic acetylcholine receptors. Bioorganic and Medicinal Chemistry Letters, 2014, 24, 674-678.                                                                                                                              | 2.2           | 18        |
| 54 | RORα modulates semaphorin 3E transcription and neurovascular interaction in pathological retinal angiogenesis. FASEB Journal, 2017, 31, 4492-4502.                                                                                                                                                                                   | 0.5           | 18        |

Theodore M Kamenecka

| #  | Article                                                                                                                                                                            | IF  | CITATIONS |
|----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 55 | Synthesis and SAR of 2-Phenoxypyridines as novel c-Jun N-terminal kinase inhibitors. Bioorganic and<br>Medicinal Chemistry Letters, 2011, 21, 7072-7075.                           | 2.2 | 16        |
| 56 | Small molecule tertiary amines as agonists of the nuclear hormone receptor Rev-erbα. Bioorganic and<br>Medicinal Chemistry Letters, 2012, 22, 4413-4417.                           | 2.2 | 16        |
| 57 | Amidines as amide bond replacements in VLA-4 antagonists. Bioorganic and Medicinal Chemistry Letters, 2004, 14, 2323-2326.                                                         | 2.2 | 14        |
| 58 | N-Aryl-prolyl-dipeptides as potent antagonists of VLA-4. Bioorganic and Medicinal Chemistry Letters, 2002, 12, 2205-2208.                                                          | 2.2 | 13        |
| 59 | HDX-MS reveals structural determinants for $ROR\hat{1}^3$ hyperactivation by synthetic agonists. ELife, 2019, 8, .                                                                 | 6.0 | 12        |
| 60 | REV-ERBα regulates age-related and oxidative stress-induced degeneration in retinal pigment epithelium via NRF2. Redox Biology, 2022, 51, 102261.                                  | 9.0 | 12        |
| 61 | Chemical systems biology reveals mechanisms of glucocorticoid receptor signaling. Nature Chemical<br>Biology, 2021, 17, 307-316.                                                   | 8.0 | 11        |
| 62 | Dipyridyl amines: Potent metabotropic glutamate subtype 5 receptor antagonists. Bioorganic and<br>Medicinal Chemistry Letters, 2005, 15, 4350-4353.                                | 2.2 | 10        |
| 63 | Synthesis of novel steroidal agonists, partial agonists, and antagonists for the glucocorticoid receptor. Bioorganic and Medicinal Chemistry Letters, 2017, 27, 347-353.           | 2.2 | 10        |
| 64 | Design, synthesis, and evaluation of simple phenol amides as ERRÎ <sup>3</sup> agonists. Bioorganic and Medicinal<br>Chemistry Letters, 2018, 28, 1313-1319.                       | 2.2 | 9         |
| 65 | Identification of an aminothiazole series of RORÎ <sup>2</sup> modulators. Bioorganic and Medicinal Chemistry Letters, 2018, 28, 1178-1181.                                        | 2.2 | 8         |
| 66 | Discovery of an intrasubunit nicotinic acetylcholine receptor–binding site for the positive allosteric modulator Br-PBTC. Journal of Biological Chemistry, 2019, 294, 12132-12145. | 3.4 | 8         |
| 67 | Unique Polypharmacology Nuclear Receptor Modulator Blocks Inflammatory Signaling Pathways. ACS<br>Chemical Biology, 2019, 14, 1051-1062.                                           | 3.4 | 8         |
| 68 | Design and synthesis of 1-aryl-5-anilinoindazoles as c-Jun N-terminal kinase inhibitors. Bioorganic and<br>Medicinal Chemistry Letters, 2013, 23, 2683-2687.                       | 2.2 | 7         |
| 69 | The discovery of indole full agonists of the neurotensin receptor 1 (NTSR1). Bioorganic and Medicinal Chemistry Letters, 2014, 24, 3974-3978.                                      | 2.2 | 7         |
| 70 | Promoting activity of (α4)3(β2)2 nicotinic cholinergic receptors reduces ethanol consumption.<br>Neuropsychopharmacology, 2020, 45, 301-308.                                       | 5.4 | 7         |
| 71 | Structural and Dynamic Elucidation of a Non-acid PPARÎ <sup>3</sup> Partial Agonist: SR1988. Nuclear Receptor Research, 2018, 5, .                                                 | 2.5 | 5         |
| 72 | Conformational Changes of RORÎ <sup>3</sup> During Response Element Recognition and Coregulator Engagement.<br>Journal of Molecular Biology, 2021, 433, 167258.                    | 4.2 | 4         |

| #  | Article                                                                                                                                                                                        | IF  | CITATIONS |
|----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 73 | A simple and robust cell-based assay for the discovery of novel cytokinesis inhibitors. Journal of<br>Biological Methods, 2020, 7, e136.                                                       | 0.6 | 4         |
| 74 | Identification of potent RORÎ <sup>2</sup> modulators: Scaffold variation. Bioorganic and Medicinal Chemistry Letters, 2018, 28, 3210-3215.                                                    | 2.2 | 3         |
| 75 | High throughput screening for compounds to the orphan nuclear receptor NR2F6. SLAS Discovery, 2022, 27, 242-248.                                                                               | 2.7 | 3         |
| 76 | Structure–Activity Relationship and Biological Investigation of SR18292 ( <b>16</b> ), a Suppressor of Glucagon-Induced Glucose Production. Journal of Medicinal Chemistry, 2021, 64, 980-990. | 6.4 | 2         |
| 77 | Discovery of Selective Inhibitors for In Vitro and In Vivo Interrogation of Skeletal Myosin II. ACS Chemical Biology, 2021, 16, 2164-2173.                                                     | 3.4 | 2         |
| 78 | Discovery and Optimization of a Series of Sulfonamide Inverse Agonists for the Retinoic Acid<br>Receptor-Related Orphan Receptor-α. Medicinal Chemistry, 2019, 15, 676-684.                    | 1.5 | 2         |
| 79 | Synthesis and structure activity relationship of the first class of LXR inverse agonists. Bioorganic Chemistry, 2022, 119, 105540.                                                             | 4.1 | 2         |