
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3868931/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Intracellular production of superoxide radical and of hydrogen peroxide by redox active compounds. Archives of Biochemistry and Biophysics, 1979, 196, 385-395.	1.4	601
2	Transcriptional regulation by Ferric Uptake Regulator (Fur) in pathogenic bacteria. Frontiers in Cellular and Infection Microbiology, 2013, 3, 59.	1.8	410
3	Mechanism of the antibiotic action pyocyanine. Journal of Bacteriology, 1980, 141, 156-163.	1.0	311
4	Enzymatic defenses against the toxicity of oxygen and of streptonigrin in Escherichia coli. Journal of Bacteriology, 1977, 129, 1574-1583.	1.0	294
5	Development of the Chick Microbiome: How Early Exposure Influences Future Microbial Diversity. Frontiers in Veterinary Science, 2016, 3, 2.	0.9	246
6	Mutagenicity of oxygen free radicals Proceedings of the National Academy of Sciences of the United States of America, 1982, 79, 2855-2859.	3.3	234
7	Acid Tolerance of <i>Leuconostoc mesenteroides</i> and <i>Lactobacillus plantarum</i> . Applied and Environmental Microbiology, 1990, 56, 2120-2124.	1.4	228
8	A comparison of sequencing platforms and bioinformatics pipelines for compositional analysis of the gut microbiome. BMC Microbiology, 2017, 17, 194.	1.3	196
9	Anti-inflammatory properties of <i>Lactobacillus gasseri</i> expressing manganese superoxide dismutase using the interleukin 10-deficient mouse model of colitis. American Journal of Physiology - Renal Physiology, 2007, 293, G729-G738.	1.6	175
10	Biosynthesis and regulation of superoxide dismutases. Free Radical Biology and Medicine, 1988, 5, 377-385.	1.3	161
11	Role of catalase and oxyR in the viable but nonculturable state of Vibrio vulnificus. FEMS Microbiology Ecology, 2004, 50, 133-142.	1.3	132
12	FNR Is a Global Regulator of Virulence and Anaerobic Metabolism in Salmonella enterica Serovar Typhimurium (ATCC 14028s). Journal of Bacteriology, 2007, 189, 2262-2273.	1.0	131
13	Transcriptional regulation of katE in Escherichia coli K-12. Journal of Bacteriology, 1988, 170, 4286-4292.	1.0	120
14	Expression of a Heterologous Manganese Superoxide Dismutase Gene in Intestinal Lactobacilli Provides Protection against Hydrogen Peroxide Toxicity. Applied and Environmental Microbiology, 2004, 70, 4702-4710.	1.4	102
15	Regulatory roles of Fnr, Fur, and Arc in expression of manganese-containing superoxide dismutase in Escherichia coli Proceedings of the National Academy of Sciences of the United States of America, 1992, 89, 3217-3221.	3.3	101
16	Regulation of superoxide dismutase synthesis in Escherichia coli: glucose effect. Journal of Bacteriology, 1977, 132, 505-510.	1.0	97
17	Microbial Superoxide Dismutases. Advances in Genetics, 1989, 26, 65-97.	0.8	91
18	Fur Negatively Regulates <i>hns</i> and Is Required for the Expression of HilA and Virulence in <i>Salmonella enterica</i> Serovar Typhimurium. Journal of Bacteriology, 2011, 193, 497-505.	1.0	91

2

HOSNI M HASSAN

#	Article	IF	CITATIONS
19	Antibacterial activity of plantaricin SIK-83, a bacteriocin produced by Lactobacillus plantarum. Biochimie, 1988, 70, 381-390.	1.3	75
20	Transcriptional and Functional Analysis of Oxalyl-Coenzyme A (CoA) Decarboxylase and Formyl-CoA Transferase Genes from Lactobacillus acidophilus. Applied and Environmental Microbiology, 2006, 72, 1891-1899.	1.4	75
21	Role of Antioxidant Enzymes in Bacterial Resistance to Organic Acids. Applied and Environmental Microbiology, 2010, 76, 2747-2753.	1.4	75
22	RpoS-Dependent Stress Response and Exoenzyme Production in Vibrio vulnificus. Applied and Environmental Microbiology, 2003, 69, 6114-6120.	1.4	72
23	Analysis of the ArcA regulon in anaerobically grown Salmonella enterica sv. Typhimurium. BMC Microbiology, 2011, 11, 58.	1.3	72
24	Induction and inactivation of catalase and superoxide dismutase of Escherichia coli by ozone. Archives of Biochemistry and Biophysics, 1987, 257, 464-471.	1.4	70
25	The Fur regulon in anaerobically grown Salmonella enterica sv. Typhimurium: identification of new Fur targets. BMC Microbiology, 2011, 11, 236.	1.3	70
26	Physiological function of superoxide dismutase in glucose-limited chemostat cultures of Escherichia coli. Journal of Bacteriology, 1977, 130, 805-811.	1.0	69
27	An Attenuated Salmonella enterica Serovar Typhimurium Strain and Galacto-Oligosaccharides Accelerate Clearance of Salmonella Infections in Poultry through Modifications to the Gut Microbiome. Applied and Environmental Microbiology, 2018, 84, .	1.4	59
28	[69] Exacerbation of superoxide radical formation by Paraquat. Methods in Enzymology, 1984, 105, 523-532.	0.4	58
29	Roles of manganese and iron in the regulation of the biosynthesis of manganese-superoxide dismutase inEscherichia coli. FEMS Microbiology Reviews, 1994, 14, 315-323.	3.9	53
30	Modeling the specific growth rate of Lactobacillus plantarum in cucumber extract. Applied Microbiology and Biotechnology, 1993, 40, 143.	1.7	50
31	Paraquat and the exacerbation of oxygen toxicity. Trends in Biochemical Sciences, 1979, 4, 113-115.	3.7	44
32	Antimicrobial Properties of Milkfat Globule Membrane Fractions. Journal of Food Protection, 2008, 71, 126-133.	0.8	44
33	Response of hydroperoxidase and superoxide dismutase deficient mutants of <i>Escherichia coli</i> K-12 to oxidative stress. Canadian Journal of Microbiology, 1988, 34, 1171-1176.	0.8	38
34	Pyruvate Protects Pathogenic Spirochetes from H2O2 Killing. PLoS ONE, 2014, 9, e84625.	1.1	38
35	Mechanism of Regulation of 8-Hydroxyguanine Endonuclease by Oxidative Stress: Roles of FNR, ArcA, and Fur. Free Radical Biology and Medicine, 1998, 24, 1193-1201.	1.3	36
36	Poultry Body Temperature Contributes to Invasion Control through Reduced Expression of Salmonella Pathogenicity Island 1 Genes in Salmonella enterica Serovars Typhimurium and Enteritidis. Applied and Environmental Microbiology, 2015, 81, 8192-8201.	1.4	36

#	Article	IF	CITATIONS
37	[53] Determination of microbial damage caused by oxygen free radicals, and the protective role of superoxide dismutase. Methods in Enzymology, 1984, 105, 404-412.	0.4	32
38	Role of oxyradicals in the inactivation of catalase by ozone. Free Radical Biology and Medicine, 1988, 5, 305-312.	1.3	30
39	Superoxide dismutase protects against paraquat-mediated dioxygen toxicity and mutagenicity: studies in Salmonella typhimurium. Canadian Journal of Physiology and Pharmacology, 1982, 60, 1367-1373.	0.7	29
40	Inhibitors of superoxide dismutases: A cautionary tale. Archives of Biochemistry and Biophysics, 1980, 199, 349-354.	1.4	28
41	Biosynthesis of superoxide dismutase in Sacchromyces cerevisiae: Effects of paraquat and copper. Journal of Free Radicals in Biology & Medicine, 1985, 1, 319-325.	2.1	28
42	Marker-free chromosomal integration of the manganese superoxide dismutase gene (sodA) fromStreptococcus thermophilusintoLactobacillus gasseri. FEMS Microbiology Letters, 2005, 246, 91-101.	0.7	28
43	Induction of the manganese-containing superoxide dismutase inEscherichia coliby nalidixic acid and by iron chelators. FEMS Microbiology Letters, 1984, 25, 233-236.	0.7	25
44	Use of site-directed mutagenesis to identify an upstream regulatory sequence of sodA gene of Escherichia coli K-12 Proceedings of the National Academy of Sciences of the United States of America, 1990, 87, 2618-2622.	3.3	24
45	Effect of malic acid on the growth kinetics of Lactobacillus plantarum. Applied Microbiology and Biotechnology, 2003, 63, 207-211.	1.7	24
46	Kinetics of Na+-dependent K+ ion transport in a marine pseudomonad. Journal of Bacteriology, 1975, 121, 160-164.	1.0	24
47	Biochemical and physiological properties of alkaline phosphatases in five isolates of marine bacteria. Journal of Bacteriology, 1977, 129, 1607-1612.	1.0	22
48	Biosynthesis of superoxide dismutase and catalase in chemostat culture of Saccharomyces cerevisiae. Applied Microbiology and Biotechnology, 1987, 26, 531-536.	1.7	21
49	Cloning and expression of the manganese superoxide dismutase gene of Escherichia coli in Lactococcus lactis and Lactobacillus gasseri. Molecular Genetics and Genomics, 1993, 239, 33-40.	2.4	21
50	Effects of pH, Dissolved Oxygen, and Ionic Strength on the Survival of Escherichia coli O157:H7 in Organic Acid Solutionsâ€â€¡. Journal of Food Protection, 2008, 71, 2404-2409.	0.8	21
51	Direct fed microbial supplementation repartitions host energy to the immune system1. Journal of Animal Science, 2012, 90, 2639-2651.	0.2	20
52	Molecular characterization and functional analysis of the manganese-containing superoxide dismutase gene (sodA) from Streptococcus thermophilus AO54. Archives of Biochemistry and Biophysics, 2003, 420, 103-113.	1.4	19
53	Impact of Dietary Galacto-Oligosaccharide (GOS) on Chicken's Gut Microbiota, Mucosal Gene Expression, and Salmonella Colonization. Frontiers in Veterinary Science, 2017, 4, 192.	0.9	19
54	Biosynthesis of superoxide dismutase in eight prokaryotes: Effects of oxygen, paraquat and an iron chelator. FEMS Microbiology Letters, 1987, 42, 33-38.	0.7	18

HOSNI M HASSAN

#	Article	IF	CITATIONS
55	Effect of oxygen tension on stability and expression of a killer toxin chimeric plasmid in a chemostat culture of Saccharomyces cerevisiae. Applied Microbiology and Biotechnology, 1987, 27, 72.	1.7	17
56	Stability and expression of a plasmid-containing killer toxin cDNA in batch and chemostat cultures ofsaccharomyces cerevisiae. Biotechnology and Bioengineering, 1988, 31, 783-789.	1.7	15
57	Evolution of the Probiotic Concept. Advances in Applied Microbiology, 2010, 72, 1-41.	1.3	15
58	Biosynthesis of superoxide dismutase and catalase inSaccharomyces cerevisiae: effects of oxygen and cytochromec deficiency. Journal of Industrial Microbiology, 1986, 1, 187-193.	0.9	14
59	An electron spin resonance study of oxyradical generation in superoxide dismutase- and catalase-deficient mutants of Escherichia coli K-12. Archives of Biochemistry and Biophysics, 1989, 271, 323-331.	1.4	14
60	Ferric Uptake Regulator-Dependent Antinitrosative Defenses in Salmonella enterica Serovar Typhimurium Pathogenesis. Infection and Immunity, 2014, 82, 333-340.	1.0	14
61	The Effects of fur on the Transcriptional and Post-transcriptional Regulation of MnSOD Gene (sodA) in Escherichia coli. Archives of Biochemistry and Biophysics, 1994, 309, 288-292.	1.4	13
62	Transcriptional activation of Mn-superoxide dismutase gene (sodA) of Escherichia coli by MnCl2. Biochimica Et Biophysica Acta Gene Regulatory Mechanisms, 1993, 1216, 186-190.	2.4	10
63	Effects of cysteine on growth, protease production, and catalase activity of Pseudomonas fluorescens. Applied and Environmental Microbiology, 1986, 51, 418-421.	1.4	10
64	The resistance of <i>Pseudomonas aeruginosa</i> to chloramphenicol. Canadian Journal of Microbiology, 1975, 21, 1185-1191.	0.8	9
65	Transcriptional regulation of Mn-superoxide dismutase gene (sodA) of Escherichia coli is stimulated by DNA gyrase inhibitors. Archives of Biochemistry and Biophysics, 1992, 299, 185-192.	1.4	9
66	Biosynthesis of oxygen-detoxifying enzymes in Bdellovibrio stolpii. Journal of Bacteriology, 1982, 152, 792-796.	1.0	9
67	[30] Determination of the mutagenicity of oxygen free radicals using microbial systems. Methods in Enzymology, 1984, 105, 254-263.	0.4	8
68	Isolation of paraquat-resistant mutants ofEscherichia coli: lack of correlation between resistance and the activity of superoxide dismutase. FEMS Microbiology Letters, 1985, 28, 93-97.	0.7	8
69	Characterization oftrans-acting regulatory elements affecting the expression of Mn-superoxide dismutase (sodA) inEscherichia coli. Current Microbiology, 1992, 25, 135-141.	1.0	8
70	Modeling the cucumber fermentation: Growth ofLactobacillus plantarum. Journal of Industrial Microbiology, 1993, 12, 341-345.	0.9	8
71	Regulation and Role of Superoxide Dismutase. Biochemical Society Transactions, 1978, 6, 356-361.	1.6	7
72	Optimization of the hide powder azure assay for quantitating the protease of Pseudomonas fluorescens. Journal of Microbiological Methods, 1985, 4, 59-66.	0.7	7

#	Article	IF	CITATIONS
73	An assay for the detection of superoxide dismutase in individual Escherichia coli colonies. Analytical Biochemistry, 1988, 168, 455-461.	1.1	7
74	Isolation and characterization of respiratory-deficient mutants of Escherichia coli K-12. Journal of Bacteriology, 1988, 170, 78-83.	1.0	7
75	Characterization of cis-Acting Regulatory Mutations Causing Anaerobic Expression of the sodA Gene in Escherichia coli. Archives of Biochemistry and Biophysics, 1993, 302, 372-379.	1.4	7
76	Characterization of the iron superoxide dismutase gene of Azotobacter vinelandii: sodB may be essential for viability. Canadian Journal of Microbiology, 2001, 47, 63-71.	0.8	7
77	Mitochondrial DNA Fragmentation as a Molecular Tool to Monitor Thermal Processing of Plantâ€Đerived, Lowâ€Acid Foods, and Biomaterials. Journal of Food Science, 2015, 80, M1804-14.	1.5	7
78	Diminution of outer membrane permeability by Mg2+ in a marine pseudomonad. Journal of Bacteriology, 1976, 125, 910-915.	1.0	7
79	Use of continuous culture for internal pH determination of lactic acid bacteria. Food Microbiology, 1991, 8, 137-142.	2.1	6
80	Binding of integration host factor (IHF) to the Escherichia coli sodA gene and its role in the regulation of a sodA-lacZ fusion gene. Molecular Genetics and Genomics, 1995, 246, 228-235.	2.4	6
81	Effect of temperature andhtpRon the biosynthesis of superoxide dismutase inEscherichia coli. FEMS Microbiology Letters, 1989, 58, 133-137.	0.7	5
82	Enhancement of the antibacterial activity of ampicillin by liposome encapsulation. Drug Delivery, 1996, 3, 273-278.	2.5	5
83	Draft Genome Sequences of Lactobacillus animalis Strain P38 and Lactobacillus reuteri Strain P43 Isolated from Chicken Cecum. Genome Announcements, 2016, 4, .	0.8	5
84	Draft Genome Sequence of Lactobacillus crispatus C25 Isolated from Chicken Cecum. Genome Announcements, 2016, 4, .	0.8	5
85	Superoxide dismutase, catalase and peroxidase in four strains ofNeisseria meningitidisof different virulence. FEMS Microbiology Letters, 1984, 25, 71-74.	0.7	4
86	Azotobacter chroococcum does not contain sodA or its gene product Mn-superoxide dismutase. Canadian Journal of Microbiology, 2002, 48, 183-187.	0.8	4
87	Role of the Mn-Catalase in Aerobic Growth of Lactobacillus plantarum ATCC 14431. Applied Microbiology, 2021, 1, 615-625.	0.7	4
88	Stability of Escherichia coli sodA mRNA and identification of the transcriptional start site(s) under different environmental and oxidative stresses. Free Radical Biology and Medicine, 1994, 17, 209-213.	1.3	2
89	Mitochondrial DNA Fragmentation to Monitor Processing Parameters in High Acid, Plantâ€Derived Foods. Journal of Food Science, 2015, 80, M2892-8.	1.5	2
90	Complete Genome Sequence of NC983, a Live Attenuated Strain of Salmonella enterica Serovar Typhimurium. Genome Announcements, 2016, 4, .	0.8	2

#	Article	IF	CITATIONS
91	Attenuated Salmonella enterica Serovar Typhimurium, Strain NC983, Is Immunogenic, and Protective against Virulent Typhimurium Challenges in Mice. Vaccines, 2020, 8, 646.	2.1	2
92	Characterization of the iron superoxide dismutase gene of <i>Azotobacter vinelandii</i> : <i>sodB</i> may be essential for viability. Canadian Journal of Microbiology, 2001, 47, 63-71.	0.8	2
93	Complete Genome Sequences of <i>Lactobacillus</i> Strains C25 and P38, Isolated from Chicken Cecum. Microbiology Resource Announcements, 2020, 9, .	0.3	1
94	Biology of Reactive Oxygen Species, Oxidative Stress, and Antioxidants in Lactic Acid Bacteria. , 2015, , 205-218.		1
95	On 'Intracellular production of superoxide radical and of hydrogen peroxide by redox active compounds' by H. Moustafa Hassan, Irwin Fridovich. Archives of Biochemistry and Biophysics, 2022, 726, 109256.	1.4	1
96	Attenuation of Antioxidant Enzymes in Response to Oxidative Stresses1. Forum of Nutrition, 1989, 43, 278-287.	3.7	0
97	Complete Genome Sequences of Six Lactobacilli Isolated from American Quarter Horses. Microbiology Resource Announcements, 2020, 9, .	0.3	0
98	Giving Good Bacteria to Chickens to Keep Humans From Getting Sick. Frontiers for Young Minds, 0, 9, .	0.8	0