
David Medvigy

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3868618/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Vegetation demographics in Earth System Models: A review of progress and priorities. Global Change Biology, 2018, 24, 35-54.	4.2	478
2	Mechanistic scaling of ecosystem function and dynamics in space and time: Ecosystem Demography model version 2. Journal of Geophysical Research, 2009, 114, .	3.3	393
3	Photosynthetic seasonality of global tropical forests constrained by hydroclimate. Nature Geoscience, 2015, 8, 284-289.	5.4	337
4	Diversity in plant hydraulic traits explains seasonal and interâ€annual variations of vegetation dynamics in seasonally dry tropical forests. New Phytologist, 2016, 212, 80-95.	3.5	274
5	A reversal in global terrestrial stilling and its implications for wind energy production. Nature Climate Change, 2019, 9, 979-985.	8.1	246
6	Tree carbon allocation explains forest droughtâ€kill and recovery patterns. Ecology Letters, 2018, 21, 1552-1560.	3.0	217
7	Will seasonally dry tropical forests be sensitive or resistant to future changes in rainfall regimes?. Environmental Research Letters, 2017, 12, 023001.	2.2	210
8	Regional dry-season climate changes due to three decades of Amazonian deforestation. Nature Climate Change, 2017, 7, 200-204.	8.1	165
9	The contributions of land-use change, CO2 fertilization, and climate variability to the Eastern US carbon sink. Global Change Biology, 2006, 12, 2370-2390.	4.2	153
10	A catastrophic tropical drought kills hydraulically vulnerable tree species. Global Change Biology, 2020, 26, 3122-3133.	4.2	132
11	Soil Moisture Stress as a Major Driver of Carbon Cycle Uncertainty. Geophysical Research Letters, 2018, 45, 6495-6503.	1.5	119
12	Terrestrial hydrological controls on land surface phenology of African savannas and woodlands. Journal of Geophysical Research G: Biogeosciences, 2014, 119, 1652-1669.	1.3	117
13	Responses of terrestrial ecosystems and carbon budgets to current and future environmental variability. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107, 8275-8280.	3.3	101
14	Seasonal carbon dynamics and water fluxes in an <scp>A</scp> mazon rainforest. Global Change Biology, 2012, 18, 1322-1334.	4.2	87
15	Macroscale prediction of autumn leaf coloration throughout the continental <scp>U</scp> nited <scp>S</scp> tates. Global Ecology and Biogeography, 2014, 23, 1245-1254.	2.7	86
16	Predicting ecosystem dynamics at regional scales: an evaluation of a terrestrial biosphere model for the forests of northeastern North America. Philosophical Transactions of the Royal Society B: Biological Sciences, 2012, 367, 222-235.	1.8	75
17	Effects of Deforestation on Spatiotemporal Distributions of Precipitation in South America. Journal of Climate, 2011, 24, 2147-2163.	1.2	74
18	Reduced net methane emissions due to microbial methane oxidation in a warmer Arctic. Nature Climate Change, 2020, 10, 317-321.	8.1	70

DAVID MEDVIGY

#	Article	IF	CITATIONS
19	The biophysics, ecology, and biogeochemistry of functionally diverse, vertically and horizontally heterogeneous ecosystems: the Ecosystem Demography model, version 2.2 – Part 1: Model description. Geoscientific Model Development, 2019, 12, 4309-4346.	1.3	62
20	Predicting changes in temperate forest budburst using continentalâ€scale observations and models. Geophysical Research Letters, 2013, 40, 359-364.	1.5	57
21	Accelerating rates of Arctic carbon cycling revealed by long-term atmospheric CO ₂ measurements. Science Advances, 2018, 4, eaao1167.	4.7	57
22	Simulated Changes in Northwest U.S. Climate in Response to Amazon Deforestation*. Journal of Climate, 2013, 26, 9115-9136.	1.2	53
23	Effects of seasonal variation of photosynthetic capacity on the carbon fluxes of a temperate deciduous forest. Journal of Geophysical Research G: Biogeosciences, 2013, 118, 1703-1714.	1.3	53
24	Allometric scaling laws linking biomass and rooting depth vary across ontogeny and functional groups in tropical dry forest lianas and trees. New Phytologist, 2020, 226, 714-726.	3.5	53
25	Simulated impacts of insect defoliation on forest carbon dynamics. Environmental Research Letters, 2012, 7, 045703.	2.2	48
26	Variations of leaf longevity in tropical moist forests predicted by a traitâ€driven carbon optimality model. Ecology Letters, 2017, 20, 1097-1106.	3.0	48
27	Relation between rainfall intensity and savanna tree abundance explained by water use strategies. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, 12992-12996.	3.3	44
28	Trends in Daily Solar Radiation and Precipitation Coefficients of Variation since 1984. Journal of Climate, 2012, 25, 1330-1339.	1.2	42
29	Observed variation in soil properties can drive large variation in modelled forest functioning and composition during tropical forest secondary succession. New Phytologist, 2019, 223, 1820-1833.	3.5	40
30	Differential declines in Alaskan boreal forest vitality related to climate and competition. Global Change Biology, 2018, 24, 1097-1107.	4.2	37
31	Tree cover shows strong sensitivity to precipitation variability across the global tropics. Global Ecology and Biogeography, 2018, 27, 450-460.	2.7	35
32	Climate, soil organic layer, and nitrogen jointly drive forest development after fire in the North American boreal zone. Journal of Advances in Modeling Earth Systems, 2016, 8, 1180-1209.	1.3	34
33	Tropical carbon sink accelerated by symbiotic dinitrogen fixation. Nature Communications, 2019, 10, 5637.	5.8	33
34	The timing of abscission affects dispersal distance in a windâ€dispersed tropical tree. Functional Ecology, 2013, 27, 208-218.	1.7	32
35	Beyond leaf habit: generalities in plant function across 97 tropical dry forest tree species. New Phytologist, 2021, 232, 148-161.	3.5	28
36	Strong control of surface roughness variations on the simulated dry season regional atmospheric response to contemporary deforestation in Rondônia, Brazil. Journal of Geophysical Research D: Atmospheres, 2014, 119, 13,067.	1.2	25

DAVID MEDVIGY

#	Article	lF	CITATIONS
37	Mass conservation and atmospheric dynamics in the Regional Atmospheric Modeling System (RAMS). Environmental Fluid Mechanics, 2005, 5, 109-134.	0.7	21
38	Modeling interannual variability of the Amazon hydroclimate. Geophysical Research Letters, 2008, 35, .	1.5	21
39	Soil biogeochemistry across Central and South American tropical dry forests. Ecological Monographs, 2021, 91, e01453.	2.4	19
40	The Ocean–Land–Atmosphere Model: Optimization and Evaluation of Simulated Radiative Fluxes and Precipitation. Monthly Weather Review, 2010, 138, 1923-1939.	0.5	18
41	Hydrological responses to defoliation and drought of an upland oak/pine forest. Hydrological Processes, 2014, 28, 6113-6123.	1.1	18
42	A scalable model for methane consumption in arctic mineral soils. Geophysical Research Letters, 2016, 43, 5143-5150.	1.5	18
43	Non-linear response of vegetation to coherent warming over northern high latitudes. Remote Sensing Letters, 2013, 4, 123-130.	0.6	17
44	Simulated Links between Deforestation and Extreme Cold Events in South America. Journal of Climate, 2012, 25, 3851-3866.	1.2	16
45	Climate-driven shifts in continental net primary production implicated as a driver of a recent abrupt increase in the land carbon sink. Biogeosciences, 2016, 13, 1597-1607.	1.3	12
46	Reduced ecosystem resilience quantifies fineâ€scale heterogeneity in tropical forest mortality responses to drought. Global Change Biology, 2022, 28, 2081-2094.	4.2	12
47	Aboveâ€ground net primary productivity in regenerating seasonally dry tropical forest: Contributions of rainfall, forest age and soil. Journal of Ecology, 2021, 109, 3903-3915.	1.9	11
48	Seasonal Flooding Causes Intensification of the River Breeze in the Central Amazon. Journal of Geophysical Research D: Atmospheres, 2019, 124, 5178-5197.	1.2	10
49	Modeling forest carbon cycle response to tree mortality: Effects of plant functional type and disturbance intensity. Journal of Geophysical Research G: Biogeosciences, 2015, 120, 2178-2193.	1.3	9
50	Biomass increases attributed to both faster tree growth and altered allometric relationships under longâ€ŧerm carbon dioxide enrichment at a temperate forest. Global Change Biology, 2020, 26, 2519-2533.	4.2	9
51	Intra-annual variation in microclimatic conditions in relation to vegetation type and structure in two tropical dry forests undergoing secondary succession. Forest Ecology and Management, 2022, 511, 120132.	1.4	8
52	Regional Hydroclimatic Variability Due To Contemporary Deforestation in Southern Amazonia and Associated Boundary Layer Characteristics. Journal of Geophysical Research D: Atmospheres, 2018, 123, 3993-4014.	1.2	7
53	Sensitivity of woody carbon stocks to bark investment strategy in Neotropical savannas and forests. Biogeosciences, 2018, 15, 233-243.	1.3	7
54	Dynamically downscaling predictions for deciduous tree leaf emergence in California under current and future climate. International Journal of Biometeorology, 2016, 60, 935-944.	1.3	3

#	Article	IF	CITATIONS
55	Climate and hydraulic traits interact to set thresholds for liana viability. Nature Communications, 2022, 13, .	5.8	3
56	Increasing Liana Abundance and Associated Reductions in Tree Growth in Secondary Seasonally Dry Tropical Forest. Frontiers in Forests and Global Change, 2022, 5, .	1.0	2
57	A Terrestrialâ€Aquatic Model Reveals Crossâ€Scale Interactions Regulate Lateral Dissolved Organic Carbon Transport From Terrestrial Ecosystems. Journal of Geophysical Research G: Biogeosciences, 2022, 127, .	1.3	2