Ingrid Elena Dumitriu

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3868500/publications.pdf

Version: 2024-02-01

#	Article	IF	CITATIONS
1	Interleukin-7 and interleukin-15 drive CD4+CD28null T lymphocyte expansion and function in patients with acute coronary syndrome. Cardiovascular Research, 2021, 117, 1935-1948.	1.8	20
2	TLR9 Mediated Tumor-Stroma Interactions in Human Papilloma Virus (HPV)-Positive Head and Neck Squamous Cell Carcinoma Up-Regulate PD-L1 and PD-L2. Frontiers in Immunology, 2019, 10, 1644.	2.2	24
3	Immunometabolism and atherosclerosis: perspectives and clinical significance: a position paper from the Working Group on Atherosclerosis and Vascular Biology of the European Society of Cardiology. Cardiovascular Research, 2019, 115, 1385-1392.	1.8	58
4	Platelet microparticles inhibit IL-17 production by regulatory T cells through P-selectin. Blood, 2016, 127, 1976-1986.	0.6	102
5	Macrophage polarisation affects their regulation of trophoblast behaviour. Placenta, 2016, 47, 73-80.	0.7	20
6	Targeting T cells to treat atherosclerosis: odyssey from bench to bedside. European Heart Journal - Cardiovascular Pharmacotherapy, 2016, 2, 194-199.	1.4	27
7	The life (and death) of <scp>CD</scp> 4 ⁺ <scp>CD</scp> 28 ^{null} T cells in inflammatory diseases. Immunology, 2015, 146, 185-193.	2.0	87
8	Impact of p16 status on pro- and anti-angiogenesis factors in head and neck cancers. British Journal of Cancer, 2015, 113, 653-659.	2.9	24
9	Oncogenic Properties of Apoptotic Tumor Cells in Aggressive B Cell Lymphoma. Current Biology, 2015, 25, 577-588.	1.8	96
10	Proteasome-Mediated Reduction in Proapoptotic Molecule Bim Renders CD4 ⁺ CD28 ^{null} T Cells Resistant to Apoptosis in Acute Coronary Syndrome. Circulation, 2015, 131, 709-720.	1.6	41
11	Immune Responses in Atherosclerosis and Microvascular Angina. , 2013, , 159-166.		0
12	The Role of Lymphocytes in the Pathogenesis of Atherosclerosis: Focus on CD4+ T Cell Subsets. , 2013, , 9-14.		0
13	Response to Letter by Ammirati et al. Circulation Research, 2012, 111, .	2.0	0
14	High Levels of Costimulatory Receptors OX40 and 4-1BB Characterize CD4 ⁺ CD28 ^{null} T Cells in Patients With Acute Coronary Syndrome. Circulation Research, 2012, 110, 857-869.	2.0	101
15	The Role of Costimulatory Receptors of the Tumour Necrosis Factor Receptor Family in Atherosclerosis. Journal of Biomedicine and Biotechnology, 2012, 2012, 1-16.	3.0	11
16	Decreased levels of alternative co-stimulatory receptors OX40 and 4-1BB characterise T cells from head and neck cancer patients. Immunobiology, 2012, 217, 669-675.	0.8	49
17	Mice lacking C1q or C3 show accelerated rejection of minor H disparate skin grafts and resistance to induction of tolerance. European Journal of Immunology, 2010, 40, 1758-1767.	1.6	32
18	Identification and Characterization of a Lupus Suppressor 129 Locus on Chromosome 3. Journal of Immunology, 2010, 184, 6256-6265.	0.4	11

INGRID ELENA DUMITRIU

#	Article	IF	CITATIONS
19	Human Dendritic Cells Produce TGF-β1 under the Influence of Lung Carcinoma Cells and Prime the Differentiation of CD4+CD25+Foxp3+ Regulatory T Cells. Journal of Immunology, 2009, 182, 2795-2807.	0.4	153
20	CD4+CD28null T cells in coronary artery disease: when helpers become killers. Cardiovascular Research, 2009, 81, 11-19.	1.8	101
21	C1q enhances IFN-Î ³ production by antigen-specific T cells via the CD40 costimulatory pathway on dendritic cells. Blood, 2009, 113, 3485-3493.	0.6	57
22	CX3CL1/fractalkine is released from apoptotic lymphocytes to stimulate macrophage chemotaxis. Blood, 2008, 112, 5026-5036.	0.6	385
23	The secretion of HMGB1 is required for the migration of maturing dendritic cells. Journal of Leukocyte Biology, 2007, 81, 84-91.	1.5	214
24	Innate Responses to Aspergillus: Role of C1q and Pentraxin 3 in Nasal Polyposis. American Journal of Rhinology & Allergy, 2007, 21, 224-230.	2.3	10
25	The pattern recognition receptor PTX3 is recruited at the synapse between dying and dendritic cells, and edits the cross-presentation of self, viral, and tumor antigens. Blood, 2006, 107, 151-158.	0.6	98
26	The tissue pentraxin PTX3 limits C1q-mediated complement activation and phagocytosis of apoptotic cells by dendritic cells. Journal of Leukocyte Biology, 2006, 80, 87-95.	1.5	122
27	Requirement of HMGB1 and RAGE for the maturation of human plasmacytoid dendritic cells. European Journal of Immunology, 2005, 35, 2184-2190.	1.6	175
28	Release of High Mobility Group Box 1 by Dendritic Cells Controls T Cell Activation via the Receptor for Advanced Glycation End Products. Journal of Immunology, 2005, 174, 7506-7515.	0.4	462
29	HMGB1: guiding immunity from within. Trends in Immunology, 2005, 26, 381-387.	2.9	319
30	HMGB1: An immmune odyssey. Discovery Medicine, 2005, 5, 388-92.	0.5	3
31	Inhibition of Phosphatidylserine Recognition Heightens the Immunogenicity of Irradiated Lymphoma Cells In Vivo. Journal of Experimental Medicine, 2004, 200, 1157-1165.	4.2	159
32	UV irradiation inhibits ABC transporters via generation of ADP-ribose by concerted action of poly(ADP-ribose) polymerase-1 and glycohydrolase. Cell Death and Differentiation, 2004, 11, 314-320.	5.0	29
33	HMGB1 is an endogenous immune adjuvant released by necrotic cells. EMBO Reports, 2004, 5, 825-830.	2.0	556
34	Corpse disposal after apoptosis. Apoptosis: an International Journal on Programmed Cell Death, 2003, 8, 469-479.	2.2	22
35	UV or X-Irradiation Increases the Cytoplasmic Accumulation of Rhodamine 123 in Various Cancer Cell Lines. Strahlentherapie Und Onkologie, 2003, 179, 564-570.	1.0	2
36	Apoptosis of the Teratocarcinoma Cell Line Tera-1 Leads to the Cleavage of HERV-K10gag Proteins by Caspases and/or Granzyme B. Scandinavian Journal of Immunology, 2002, 56, 303-309.	1.3	6

#	Article	IF	CITATIONS
37	5,6-Carboxyfluorescein Diacetate Succinimidyl Ester-Labeled Apoptotic and Necrotic as Well as Detergent-Treated Cells Can Be Traced in Composite Cell Samples. Analytical Biochemistry, 2001, 299, 247-252.	1.1	38