Sergey M Shugurov

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3868322/publications.pdf

Version: 2024-02-01

#	Article	IF	CITATIONS
1	Thermodynamic properties of the Lu2O3–ZrO2 solid solutions by Knudsen effusion mass spectrometry at high temperature. Journal of Chemical Thermodynamics, 2014, 72, 85-88.	2.0	28
2	Mass spectrometric study of thermodynamic properties in the Yb ₂ O ₃ â€ZrO ₂ system at high temperatures. Rapid Communications in Mass Spectrometry, 2014, 28, 109-114.	1.5	25
3	Thermodynamic properties of the La ₂ O ₃ –ZrO ₂ system by Knudsen effusion mass spectrometry at high temperature. Rapid Communications in Mass Spectrometry, 2017, 31, 2021-2029.	1.5	24
4	Vaporization and thermodynamic properties of the PbO-V2O5 system. Russian Journal of Inorganic Chemistry, 2006, 51, 1646-1652.	1.3	20
5	Thermodynamic study of some chromium-containing gaseous molecules by high-temperature mass spectrometry. Rapid Communications in Mass Spectrometry, 2004, 18, 112-116.	1.5	17
6	Gaseous Vanadium Molybdate and Tungstates: Thermodynamic Properties and Structures. Inorganic Chemistry, 2012, 51, 4918-4924.	4.0	15
7	Thermal stability of CaCu3Ti4O12: Simultaneous thermal analysis and high-temperature mass spectrometric study. Ceramics International, 2018, 44, 20841-20844.	4.8	15
8	Thermodynamic properties of silicate glasses and melts: I. System BaO-SiO2. Russian Journal of General Chemistry, 2006, 76, 1522-1530.	0.8	14
9	Vaporization and thermodynamics of ceramics in the Sm 2 O 3 ‥ 2 O 3 â€HfO 2 system. Rapid Communications in Mass Spectrometry, 2020, 34, e8693.	1.5	14
10	Title is missing!. Russian Journal of General Chemistry, 2003, 73, 169-175.	0.8	13
11	Highâ€ŧemperature mass spectrometric study and modeling of thermodynamic properties of binary glassâ€forming systems containing Bi ₂ O ₃ . Rapid Communications in Mass Spectrometry, 2014, 28, 801-810.	1.5	13
12	Preparation and characterization of methanol selective membranes based on polyheteroarylene ⴒ Cu(I) complexes for purification of methyl tertiary butyl ether. Polymer International, 2017, 66, 1873-1882.	3.1	13
13	Ceramics based on the Sm2O3–Y2O3 and Sm2O3–HfO2 systems at high temperatures: Thermodynamics and modeling. Materials Chemistry and Physics, 2020, 252, 123240.	4.0	13
14	THERMODYNAMIC STUDY OF GASEOUS MANGANESE PHOSPHATES MnPO3 and MnPO2. Phosphorus, Sulfur and Silicon and the Related Elements, 2004, 179, 2091-2098.	1.6	12
15	Highâ€ŧemperature mass spectrometric study of the vaporization processes and thermodynamic properties of samples in the Bi ₂ 0 ₃ â€P ₂ 0 ₃ â€P ₂ 0 _{â€biO₂system. Rapid Communications in Mass Spectrometry 2017 31 111-120}	1.5	12
16	Thermodynamics of gaseous cobaltates CaCoO2, SrCoO2 and BaCoO2. Journal of Chemical Thermodynamics, 2005, 37, 715-719.	2.0	11
17	Thermodynamic properties of the gaseous barium silicates BaSiO2 and BaSiO3. Journal of Chemical Thermodynamics, 2006, 38, 1706-1710.	2.0	11
18	Vaporization features of CeO2ZrO2 solid solutions at high temperature. Journal of Alloys and Compounds, 2019, 776, 194-201.	5.5	11

#	Article	IF	CITATIONS
19	Thermodynamic properties of silicate glasses and melts: II. System SrO-SiO2. Russian Journal of General Chemistry, 2006, 76, 1878-1884.	0.8	10
20	Thermodynamic Properties of the Gaseous Gallium Molybdates and Tungstates. Journal of Physical Chemistry A, 2009, 113, 13469-13474.	2.5	10
21	Stability and structures of gaseous In2MoO4, In2WO4 and In2W2O7. Dalton Transactions, 2013, 42, 8339.	3.3	10
22	Mass spectrometric study of thermodynamic properties of BaO-CeO2. The formation enthalpy of BaCeO3 (solid). Journal of Alloys and Compounds, 2017, 693, 1028-1034.	5.5	10
23	Thermodynamic properties of silicate glasses and melts: VII. System MgO-B2O3-SiO2. Russian Journal of General Chemistry, 2010, 80, 2405-2413.	0.8	9
24	Thermodynamic study of gaseous vanadium phosphates by highâ€ŧemperature mass spectrometry. Rapid Communications in Mass Spectrometry, 2011, 25, 3464-3468.	1.5	9
25	Thermodynamics of gaseous barium cerate studied by Knudsen effusion mass spectrometry. Rapid Communications in Mass Spectrometry, 2016, 30, 2027-2032.	1.5	9
26	The effect of СuO on the microstructure, spectral characteristics, thermal and electrical properties of BiNbO4 ceramics. Journal of Alloys and Compounds, 2020, 822, 153619.	5.5	9
27	Gaseous Associates over Oxide Materials. Inorganic Materials, 2005, 41, 1340-1344.	0.8	8
28	Thermodynamic properties and structure of gaseous BMoO ₄ . Dalton Transactions, 2013, 42, 1210-1214.	3.3	8
29	Gaseous titanium molybdates and tungstates: Thermodynamic properties and structures. Rapid Communications in Mass Spectrometry, 2014, 28, 2636-2644.	1.5	8
30	Asymmetric Membranes Based on Copolyheteroarylenes with Imide, Biquinoline, and Oxazinone Units: Formation and Characterization. Polymers, 2019, 11, 1542.	4.5	8
31	Title is missing!. Russian Journal of General Chemistry, 2001, 71, 1342-1346.	0.8	7
32	Highâ€ŧemperature mass spectrometric determinations of relative ionization crossâ€sections of gaseous TiO, TiO ₂ , VO, VO ₂ , YO, HfO and GeO molecules. Rapid Communications in Mass Spectrometry, 2013, 27, 2338-2342.	1.5	7
33	Thermal stability and structures of gaseous GeB2O4 and GeMo2O7. RSC Advances, 2014, 4, 39725-39731.	3.6	7
34	Thermodynamic properties of silicate glasses and melts: IX. Bi2O3-SiO2 system. Russian Journal of General Chemistry, 2014, 84, 419-423.	0.8	7
35	Sorption properties and transport parameters of membranes based on polybenzoxazinoneimide and its prepolymer. Petroleum Chemistry, 2017, 57, 318-326.	1.4	7
36	Evaluation of relative electron ionization crossâ€sections for some oxides and oxyacid salts. Rapid Communications in Mass Spectrometry, 2017, 31, 1559-1564.	1.5	7

#	Article	IF	CITATIONS
37	Thermal prehistory, structure and high-temperature thermodynamic properties of Y2O3-CeO2 and Y2O3-ZrO2-CeO2 solid solutions. Ceramics International, 2021, 47, 11072-11079.	4.8	7
38	Thermochemical Study of Salts of Oxygen-containing Acids in the Gas Phase: VI. Barium Metaborates. Russian Journal of General Chemistry, 2001, 71, 61-66.	0.8	6
39	Thermochemical Study of Gaseous Salts of Oxygen-containing Acids: XIV. Barium and Chromium Phosphates. Russian Journal of General Chemistry, 2003, 73, 1866-1869.	0.8	6
40	Thermochemical study of gaseous salts of oxygen-containing acids: XIX. Tin salts. Russian Journal of General Chemistry, 2015, 85, 1351-1369.	0.8	6
41	Thermodynamic properties of the gaseous lead phosphates. Journal of Chemical Thermodynamics, 2016, 101, 337-342.	2.0	6
42	Development of Novel Polyamide-Imide/DES Composites and Their Application for Pervaporation and Gas Separation. Molecules, 2021, 26, 990.	3.8	6
43	Thermodynamic properties of the system MgO-B2O3 melts. Russian Journal of General Chemistry, 2010, 80, 689-694.	0.8	5
44	Thermodynamics and vaporization of the Sm2O3–ZrO2 system studied by Knudsen effusion mass spectrometry. Journal of Physics and Chemistry of Solids, 2021, 156, 110156.	4.0	5
45	Thermochemical Study of Gaseous Salts of Oxygen-containing Acids: XVIII. Cobalt(II) Salts. Russian Journal of General Chemistry, 2005, 75, 1186-1192.	0.8	4
46	Thermodynamic properties of gaseous barium silicates. Doklady Physical Chemistry, 2006, 407, 85-87.	0.9	4
47	Thermodynamic properties of silicate glasses and melts: V. Systems CaB2O4-CaSiO3 and Ca2B2O5-CaSiO3. Russian Journal of General Chemistry, 2008, 78, 1877-1881.	0.8	4
48	Thermochemical study of gaseous salts of oxygen-containing acids: XXIV. Polymers of alkali metals perrenates. Russian Journal of General Chemistry, 2008, 78, 1882-1888.	0.8	4
49	Thermochemical study of gaseous salts of oxygen-containing acids: XXVII. Antimonites of alkali metals. Russian Journal of General Chemistry, 2011, 81, 1411-1416.	0.8	4
50	Thermodynamic study of gaseous tin molybdates by highâ€ŧemperature mass spectrometry. Rapid Communications in Mass Spectrometry, 2015, 29, 1427-1436.	1.5	4
51	Thermochemical study of gaseous salts of oxygen-containing acids: XXI. Zinc phosphate. Russian Journal of General Chemistry, 2016, 86, 778-784.	0.8	4
52	Mass spectrometric study of ceramics in the Sm ₂ O ₃ â€ZrO ₂ â€HfO ₂ system at high temperatures. Rapid Communications in Mass Spectrometry, 2021, 35, e9066.	1.5	4
53	Evaporation and Thermodynamic Properties of the CeO2–TiO2–ZrO2 System. Russian Journal of General Chemistry, 2021, 91, 2008-2012.	0.8	4
54	Vaporization and thermodynamic properties of the SrOâ€Al ₂ O ₃ system studied by Knudsen effusion mass spectrometry. Rapid Communications in Mass Spectrometry, 2022, 36, e9298.	1.5	4

#	Article	IF	CITATIONS
55	Thermochemical Study of Gaseous Salts of Oxygen-Containing Acids: XVII. Magnesium Salts. Russian Journal of General Chemistry, 2005, 75, 999-1004.	0.8	3
56	Thermodynamic properties of gaseous strontium silicates. Doklady Physical Chemistry, 2006, 411, 315-316.	0.9	3
57	Thermochemical study of gaseous salts of oxygen-containing acids: XX. Phosphates of beryllium and beryllates of alkaline-earth metals. Russian Journal of General Chemistry, 2006, 76, 871-874.	0.8	3
58	Thermodynamic properties of silicate glasses and melts: III. System Rb2O-B2O3-SiO2. Russian Journal of General Chemistry, 2007, 77, 997-1001.	0.8	3
59	Thermochemical study of gaseous salts of oxygen-containing acids: XXII. Tin molybdates. Russian Journal of General Chemistry, 2008, 78, 847-853.	0.8	3
60	Thermodynamic properties of melts of the system CaO-B2O3. Russian Journal of General Chemistry, 2008, 78, 1139-1145.	0.8	3
61	Thermodynamics of gaseous calcium silicates. Doklady Physical Chemistry, 2008, 418, 5-6.	0.9	3
62	Highâ€ŧemperature mass spectrometric study of the vaporization processes and thermodynamic properties of melts in the PbOâ€B ₂ O ₃ â€6iO ₂ system. Rapid Communications in Mass Spectrometry, 2013, 27, 1559-1566.	1.5	3
63	Thermochemical study of gaseous salts of oxygen-containing acids: XX. Germanium salts. Russian Journal of General Chemistry, 2015, 85, 1588-1598.	0.8	3
64	Thermodynamics of Gaseous Barium Chromates. Doklady Physical Chemistry, 2002, 386, 255-256.	0.9	2
65	Gaseous Manganese Molybdates and Tungstates. Doklady Physical Chemistry, 2004, 395, 80-83.	0.9	2
66	Thermodynamic Properties of Gaseous Strontium and Barium Ferrates. Doklady Physical Chemistry, 2004, 397, 158-160.	0.9	2
67	Thermodynamic properties of gaseous salts formed by Nickel(II) oxide. Doklady Physical Chemistry, 2006, 406, 27-29.	0.9	2
68	Thermochemical study of gaseous salts of oxygen-containing acids: XIX. Nickel(II) salts. Russian Journal of General Chemistry, 2006, 76, 340-345.	0.8	2
69	The thermodynamic properties of gaseous salts formed by some 3d metal oxides. Russian Journal of Physical Chemistry A, 2006, 80, 1749-1753.	0.6	2
70	Thermochemical study of gaseous salts of oxygen-containing acids: XXI. Polymers of lithium, potassium, and cesium phosphates. Russian Journal of General Chemistry, 2007, 77, 1487-1493.	0.8	2
71	Thermochemical study of gaseous salts of oxygen-containing acids: XXIII. Molecules MnB2O4, MnNbO2, MnNbO3 and MnTiO3. Russian Journal of General Chemistry, 2008, 78, 854-859.	0.8	2
72	Thermochemical study of gaseous salts of oxygen-containing acids: XXVI. Iodates of alkali metals. Russian Journal of General Chemistry, 2010, 80, 875-880.	0.8	2

#	Article	IF	CITATIONS
73	Thermochemical study of gaseous salts of oxygen-containing acids: XXVIII. Gallium borates. Russian Journal of General Chemistry, 2011, 81, 2045-2050.	0.8	2
74	Formation and thermodynamics of gaseous germanium and tin vanadates: a mass spectrometric and quantum chemical study. Dalton Transactions, 2015, 44, 10014-10021.	3.3	2
75	Thermochemical study of gaseous salts of oxygen-containing acids: XXII.1 Lead salts. Russian Journal of General Chemistry, 2016, 86, 2243-2255.	0.8	2
76	Mass spectrometric study of thermodynamic properties of gaseous lead tellurates. Estimation of formation enthalpies of gaseous lead polonates. Journal of Nuclear Materials, 2016, 479, 271-278.	2.7	2
77	Thermodynamic properties of gaseous cerium molybdates and tungstates studied by Knudsen effusion mass spectrometry. Rapid Communications in Mass Spectrometry, 2018, 32, 1608-1616.	1.5	2
78	Thermochemical study of gaseous indium–arsenic sulfosalt. Rapid Communications in Mass Spectrometry, 2019, 33, 1826-1833.	1.5	2
79	Highâ€ŧemperature mass spectrometric study of the thermodynamic properties in the Sm ₂ O ₃ â€ZrO ₂ â€HfO ₂ system. Rapid Communications in Mass Spectrometry, 2022, 36, e9238.	1.5	2
80	Thermodynamic Properties of Gaseous Iron(II) Salts. Doklady Physical Chemistry, 2004, 398, 208-210.	0.9	1
81	Thermochemical study of gaseous salts of oxygen-containing acids: XXV. Magnesium borates. Russian Journal of General Chemistry, 2010, 80, 379-384.	0.8	1
82	Mass spectrometric study of thermodynamic properties of gaseous tin borates SnB2O4 and Sn2B2O5. International Journal of Mass Spectrometry, 2015, 392, 69-72.	1.5	1
83	Gaseous complex sulfides. Russian Journal of General Chemistry, 2016, 86, 1191-1192.	0.8	1
84	Vapor pressures and thermodynamic properties of simple and complex iodides. Thermochimica Acta, 2021, 703, 178996.	2.7	1
85	Thermodynamic properties of gaseous salts formed by cobalt(II) oxide. Doklady Physical Chemistry, 2005, 401, 41-43.	0.9	0
86	Thermodynamic Properties of Gaseous Alkali Metal Vanadates Monomers and Dimers by High Temperature Mass Spectrometry. ECS Transactions, 2013, 46, 211-216.	0.5	0
87	High Temperature Mass Spectrometric Study of the Gaseous Gallium Oxyacid Salts. ECS Transactions, 2013, 46, 217-221.	0.5	0
88	Thermodynamic properties of gaseous cerium phosphate studied by Knudsen effusion mass spectrometry. Journal of Mass Spectrometry, 2019, 54, 507-519.	1.6	0
89	Thermodynamic properties of gaseous BaSnO 2 and Ba 2 O 2 studied by Knudsen effusion mass spectrometry. Rapid Communications in Mass Spectrometry, 2020, 34, e8716.	1.5	0
90	Mass spectrometric study and modeling of the thermodynamic properties in the Gd ₂ O ₃ â€ZrO ₂ â€HfO ₂ system at high temperatures. Rapid Communications in Mass Spectrometry, 2022, 36, e9306.	1.5	0