Edward K Chow

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3868055/publications.pdf

Version: 2024-02-01

76 papers 5,157 citations

32 h-index 60 g-index

78 all docs 78 docs citations

78 times ranked 8481 citing authors

#	Article	IF	Citations
1	Mechanisms of chemoresistance in cancer stem cells. Clinical and Translational Medicine, 2013, 2, 3.	4.0	608
2	Nanodiamond Therapeutic Delivery Agents Mediate Enhanced Chemoresistant Tumor Treatment. Science Translational Medicine, 2011, 3, 73ra21.	12.4	484
3	Cancer Nanomedicine: From Drug Delivery to Imaging. Science Translational Medicine, 2013, 5, 216rv4.	12.4	404
4	Exosomes in Cancer Nanomedicine and Immunotherapy: Prospects and Challenges. Trends in Biotechnology, 2017, 35, 665-676.	9.3	313
5	Epigenetics in cancer stem cells. Molecular Cancer, 2017, 16, 29.	19.2	296
6	Accelerating the Translation of Nanomaterials in Biomedicine. ACS Nano, 2015, 9, 6644-6654.	14.6	279
7	Multimodal Nanodiamond Drug Delivery Carriers for Selective Targeting, Imaging, and Enhanced Chemotherapeutic Efficacy. Advanced Materials, 2011, 23, 4770-4775.	21.0	216
8	Nanodiamonds: The intersection of nanotechnology, drug development, and personalized medicine. Science Advances, $2015, 1, e1500439$.	10.3	172
9	Epirubicin-Adsorbed Nanodiamonds Kill Chemoresistant Hepatic Cancer Stem Cells. ACS Nano, 2014, 8, 12151-12166.	14.6	170
10	Enabling Technologies for Personalized and Precision Medicine. Trends in Biotechnology, 2020, 38, 497-518.	9.3	169
11	Clinical Applications of Carbon Nanomaterials in Diagnostics and Therapy. Advanced Materials, 2018, 30, e1802368.	21.0	149
12	Nanodiamond Vectors Functionalized with Polyethylenimine for siRNA Delivery. Journal of Physical Chemistry Letters, 2010, 1, 3167-3171.	4.6	146
13	Biocompatibility Assessment of Detonation Nanodiamond in Non-Human Primates and Rats Using Histological, Hematologic, and Urine Analysis. ACS Nano, 2016, 10, 7385-7400.	14.6	117
14	Diamond‣ipid Hybrids Enhance Chemotherapeutic Tolerance and Mediate Tumor Regression. Advanced Materials, 2013, 25, 3532-3541.	21.0	107
15	Triggered release of therapeutic antibodies from nanodiamond complexes. Nanoscale, 2011, 3, 2844.	5.6	98
16	Targeting Jak/Stat pathway as a therapeutic strategy against SP/CD44+ tumorigenic cells in Akt/l²-catenin-driven hepatocellular carcinoma. Journal of Hepatology, 2020, 72, 104-118.	3.7	88
17	Oncogene-specific formation of chemoresistant murine hepatic cancer stem cells. Hepatology, 2012, 56, 1331-1341.	7.3	87
18	Nanodiamond–Mitoxantrone Complexes Enhance Drug Retention in Chemoresistant Breast Cancer Cells. Molecular Pharmaceutics, 2014, 11, 2683-2691.	4.6	83

#	Article	IF	CITATIONS
19	Applications of stimuli-responsive nanoscale drug delivery systems in translational research. Drug Discovery Today, 2018, 23, 1043-1052.	6.4	82
20	Dual‶argeting Dualâ€Action Platinum(IV) Platform for Enhanced Anticancer Activity and Reduced Nephrotoxicity. Angewandte Chemie - International Edition, 2019, 58, 8109-8114.	13.8	81
21	Optimizing drug combinations against multiple myeloma using a quadratic phenotypic optimization platform (QPOP). Science Translational Medicine, 2018, 10, .	12.4	80
22	Epigenetics of hepatocellular carcinoma. Clinical and Translational Medicine, 2019, 8, 13.	4.0	75
23	Synthesis of nanodiamond–daunorubicin conjugates to overcome multidrug chemoresistance in leukemia. Nanomedicine: Nanotechnology, Biology, and Medicine, 2014, 10, 359-369.	3.3	74
24	Generation of matched patient-derived xenograft inÂvitro-inÂvivo models using 3D macroporous hydrogels for the study of liver cancer. Biomaterials, 2018, 159, 229-240.	11.4	56
25	Clinical validation of a nanodiamond-embedded thermoplastic biomaterial. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, E9445-E9454.	7.1	55
26	3D Culture as a Clinically Relevant Model for Personalized Medicine. SLAS Technology, 2017, 22, 245-253.	1.9	50
27	Nanodiamond–Manganese dual mode MRI contrast agents for enhanced liver tumor detection. Nanomedicine: Nanotechnology, Biology, and Medicine, 2017, 13, 783-793.	3.3	46
28	Project IDentif.Al: Harnessing Artificial Intelligence to Rapidly Optimize Combination Therapy Development for Infectious Disease Intervention. Advanced Therapeutics, 2020, 3, 2000034.	3.2	44
29	New High-Throughput Screening Identifies Compounds That Reduce Viability Specifically in Liver Cancer Cells That Express High Levels of SALL4 by Inhibiting Oxidative Phosphorylation. Gastroenterology, 2019, 157, 1615-1629.e17.	1.3	42
30	Identification and Optimization of Combinatorial Glucose Metabolism Inhibitors in Hepatocellular Carcinomas. Journal of the Association for Laboratory Automation, 2015, 20, 423-437.	2.8	35
31	Stimuli-Responsive Nanodiamond-Based Biosensor for Enhanced Metastatic Tumor Site Detection. SLAS Technology, 2018, 23, 44-56.	1.9	35
32	A role for IRF3-dependent RXR $\hat{1}$ ± repression in hepatotoxicity associated with viral infections. Journal of Experimental Medicine, 2006, 203, 2589-2602.	8.5	34
33	Capitalizing on Synthetic Lethality of MYC to Treat Cancer in the Digital Age. Trends in Pharmacological Sciences, 2021, 42, 166-182.	8.7	31
34	Hepatocellular carcinoma organoid co-cultures mimic angiocrine crosstalk to generate inflammatory tumor microenvironment. Biomaterials, 2022, 284, 121527.	11.4	30
35	Diamonds, Digital Health, and Drug Development: Optimizing Combinatorial Nanomedicine. ACS Nano, 2016, 10, 9087-9092.	14.6	29
36	<scp>IDentif</scp> . <scp>AI</scp> : Rapidly optimizing combination therapy design against severe Acute Respiratory Syndrome Coronavirus 2 (SARS ovâ€2) with digital drug development. Bioengineering and Translational Medicine, 2021, 6, e10196.	7.1	27

#	Article	IF	CITATIONS
37	Dualâ€Targeting Dualâ€Action Platinum(IV) Platform for Enhanced Anticancer Activity and Reduced Nephrotoxicity. Angewandte Chemie, 2019, 131, 8193-8198.	2.0	24
38	Nanodiamond-Mediated Delivery of a G9a Inhibitor for Hepatocellular Carcinoma Therapy. ACS Applied Materials & Samp; Interfaces, 2019, 11, 45427-45441.	8.0	24
39	Application of an ex-vivo drug sensitivity platform towards achieving complete remission in a refractory T-cell lymphoma. Blood Cancer Journal, 2020, 10, 9.	6.2	22
40	Maximizing Efficiency of Artificial Intelligenceâ€Driven Drug Combination Optimization through Minimal Resolution Experimental Design. Advanced Therapeutics, 2020, 3, 1900122.	3.2	19
41	Nanodiamondâ€Based Platform for Intracellularâ€Specific Delivery of Therapeutic Peptides against Hepatocellular Carcinoma. Advanced Therapeutics, 2018, 1, 1800110.	3.2	17
42	Nanomedicine for Global Health. Journal of the Association for Laboratory Automation, 2014, 19, 511-516.	2.8	15
43	Enhanced penetrative siRNA delivery by a nanodiamond drug delivery platform against hepatocellular carcinoma 3D models. Nanoscale, 2021, 13, 16131-16145.	5.6	15
44	Whole-genome sequencing reveals potent therapeutic strategy for monomorphic epitheliotropic intestinal T-cell lymphoma. Blood Advances, 2020, 4, 4769-4774.	5.2	14
45	Targeting RNA editing of antizyme inhibitor 1: A potential oligonucleotide-based antisense therapy for cancer. Molecular Therapy, 2021, 29, 3258-3273.	8.2	13
46	Artificial Intelligence-Driven Designer Drug Combinations: From Drug Development to Personalized Medicine. SLAS Technology, 2019, 24, 124-125.	1.9	12
47	Improving the therapeutic ratio of radiotherapy against radioresistant cancers: Leveraging on novel artificial intelligence-based approaches for drug combination discovery. Cancer Letters, 2021, 511, 56-67.	7.2	11
48	Safety evaluation of nanodiamond-doxorubicin complexes in a NaÃ-ve Beagle canine model using hematologic, histological, and urine analysis. Nano Research, 2022, 15, 3356-3366.	10.4	11
49	The IDentif.Al-x pandemic readiness platform: Rapid prioritization of optimized COVID-19 combination therapy regimens. Npj Digital Medicine, 2022, 5, .	10.9	11
50	Frequent upregulation of G9a promotes RelB-dependent proliferation and survival in multiple myeloma. Experimental Hematology and Oncology, 2020, 9, 8.	5.0	10
51	A chemical biology approach reveals a dependency of glioblastoma on biotin distribution. Science Advances, 2021, 7, eabf6033.	10.3	10
52	Bioorthogonal Catalysis for Treatment of Solid Tumors Using Thermostable, Self-Assembling, Single Enzyme Nanoparticles and Natural Product Conversion with Indole-3-acetic Acid. ACS Nano, 2022, 16, 10292-10301.	14.6	9
53	Carbon nanomaterials: fundamental concepts, biological interactions, and clinical applications. , 2020, , 223-242.		7
54	The 2017 SLAS Technology Ten: Translating Life Sciences Innovation. SLAS Technology, 2017, 22, 3-6.	1.9	4

#	Article	IF	CITATIONS
55	Datasets describing the growth and molecular features of hepatocellular carcinoma patient-derived xenograft cells grown in a three-dimensional macroporous hydrogel. Data in Brief, 2018, 18, 594-606.	1.0	3
56	JALA. Journal of the Association for Laboratory Automation, 2015, 20, 1-2.	2.8	2
57	SLAS Technology: Translating Life Sciences Innovation. SLAS Technology, 2017, 22, 1-2.	1.9	2
58	Photodynamic Therapy: A Flexiâ€PEGDA Upconversion Implant for Wireless Brain Photodynamic Therapy (Adv. Mater. 29/2020). Advanced Materials, 2020, 32, 2070219.	21.0	2
59	The 2020 SLAS Technology Ten: Translating Life Sciences Innovation. SLAS Technology, 2020, 25, 1-5.	1.9	2
60	Cancer Therapy: Diamondâ€Lipid Hybrids Enhance Chemotherapeutic Tolerance and Mediate Tumor Regression (Adv. Mater. 26/2013). Advanced Materials, 2013, 25, 3502-3502.	21.0	1
61	WisDM Green: Harnessing Artificial Intelligence to Design and Prioritize Compound Combinations in Peat Moss for Sustainable Farming Applications. Advanced Intelligent Systems, 2022, 4, .	6.1	1
62	Attenuation of Cellular Inflammation Using Glucocorticoid-Functionalized Copolymers., 2007,,.		0
63	Congratulations to The 2015 JALA Ten!. Journal of the Association for Laboratory Automation, 2015, 20, 64-69.	2.8	0
64	Congratulations to the 2016 JALA Ten!. Journal of the Association for Laboratory Automation, 2016, 21, 227-233.	2.8	0
65	JALA Special Issue. Journal of the Association for Laboratory Automation, 2016, 21, 234-237.	2.8	0
66	Welcome to the Digital World of Quantitative Biology. SLAS Technology, 2017, 22, 367-368.	1.9	0
67	The 2019 SLAS Technology Ten: Translating Life Sciences Innovation. SLAS Technology, 2019, 24, 66-69.	1.9	0
68	Shape Matters Too. Science Translational Medicine, 2013, 5, .	12.4	0
69	Now You See Me, Now You Don't. Science Translational Medicine, 2013, 5, .	12.4	0
70	Banking on Carbon. Science Translational Medicine, 2013, 5, .	12.4	0
71	One Drop, Many Possibilities. Science Translational Medicine, 2013, 5, .	12.4	0
72	Forging New Approaches to Stem Cell Tracking. Science Translational Medicine, 2013, 5, .	12.4	0

#	Article	IF	CITATIONS
73	One Device to Find Them All. Science Translational Medicine, 2013, 5, .	12.4	0
74	Building Inner Strength. Science Translational Medicine, 2013, 5, .	12.4	0
75	TRAIL-Blazing Therapy Against Circulating Tumor Cells. Science Translational Medicine, 2014, 6, .	12.4	0
76	Sifting for Diagnostic Gold. Science Translational Medicine, 2014, 6, .	12.4	0