
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3867726/publications.pdf Version: 2024-02-01

ALLEN C. HUNT

#	Article	IF	CITATIONS
1	Test of model of equivalence of tree height growth and transpiration rates in percolation-based phenomenology for root-soil interaction. Ecological Modelling, 2022, 465, 109853.	2.5	3
2	Application of Percolation Theory to Reaction and Flow in Geochemical Systems in Soil and Rock. , 2021, , 289-321.		0
3	Modelling flow and transport in variably saturated porous media: Applications from percolation theory and effective-medium approximation. , 2021, , 79-117.		0
4	Estimating specific surface area: Incorporating the effect of surface roughness and probing molecule size. Soil Science Society of America Journal, 2021, 85, 534-545.	2.2	5
5	Predicting Characteristics of the Water Cycle From Scaling Relationships. Water Resources Research, 2021, 57, e2021WR030808.	4.2	5
6	Non-linear hydrologic organization. Nonlinear Processes in Geophysics, 2021, 28, 599-614.	1.3	4
7	A new phenomenological model to describe root-soil interactions based on percolation theory. Ecological Modelling, 2020, 433, 109205.	2.5	9
8	Predicting Water Cycle Characteristics from Percolation Theory and Observational Data. International Journal of Environmental Research and Public Health, 2020, 17, 734.	2.6	10
9	Percolation Theory to Reaction and Flow in Geochemical Systems in Soil and Rock. , 2020, , 1-34.		0
10	Evolution of soil pores and their characteristics in a siliceous and calcareous proglacial area. Catena, 2019, 182, 104154.	5.0	28
11	Comparison and Contrast in Soil Depth Evolution for Steady State and Stochastic Erosion Processes: Possible Implications for Landslide Prediction. Geochemistry, Geophysics, Geosystems, 2019, 20, 2886-2906.	2.5	18
12	Predicting soil formation on the basis of transport-limited chemical weathering. Geomorphology, 2018, 301, 21-27.	2.6	28
13	Prediction of Soil Formation as a Function of Age Using the Percolation Theory Approach. Frontiers in Environmental Science, 2018, 6, .	3.3	35
14	Theoretical bounds for the exponent in the empirical power-law advance-time curve for surface flow. Agricultural Water Management, 2018, 210, 208-216.	5.6	2
15	Damköhler Number Input to Transport-Limited Chemical Weathering Calculations. ACS Earth and Space Chemistry, 2017, 1, 30-38.	2.7	29
16	Improving unsaturated hydraulic conductivity estimation in soils via percolation theory. Geoderma, 2017, 303, 9-18.	5.1	29
17	Spatiotemporal Scaling of Vegetation Growth and Soil Formation: Explicit Predictions. Vadose Zone Journal, 2017, 16, 1-12.	2.2	28
18	Upscaling soil saturated hydraulic conductivity from pore throat characteristics. Advances in Water Resources, 2017, 104, 105-113.	3.8	32

#	Article	IF	CITATIONS
19	Flow, Transport, and Reaction in Porous Media: Percolation Scaling, Criticalâ€Path Analysis, and Effective Medium Approximation. Reviews of Geophysics, 2017, 55, 993-1078.	23.0	130
20	An examination of the steadyâ€state assumption in soil development models with application to landscape evolution. Earth Surface Processes and Landforms, 2017, 42, 2599-2610.	2.5	23
21	Theoretical Insight Into the Empirical Tortuosityâ€Connectivity Factor in the <i>Burdineâ€Brooksâ€Corey</i> Water Relative Permeability Model. Water Resources Research, 2017, 53, 10395-10410.	4.2	20
22	A Simple Model of the Variability of Soil Depths. Water (Switzerland), 2017, 9, 460.	2.7	27
23	A Percolationâ€Based Approach to Scaling Infiltration and Evapotranspiration. Water (Switzerland), 2017, 9, 104.	2.7	10
24	Spatioâ€ŧemporal Scaling of Vegetation Growth and Soil Formation from Percolation Theory. Vadose Zone Journal, 2016, 15, 1-15.	2.2	21
25	Brief communication: Possible explanation of the values of Hack's drainage basin, river length scaling exponent. Nonlinear Processes in Geophysics, 2016, 23, 91-93.	1.3	5
26	Preface to the Special Issue of <i>Vadose Zone Journal</i> on Soil as Complex Systems. Vadose Zone Journal, 2016, 15, 1-3.	2.2	2
27	Fluid flow in porous media with rough poreâ€solid interface. Water Resources Research, 2016, 52, 2045-2058.	4.2	53
28	Percolation theory for solute transport in porous media: Geochemistry, geomorphology, and carbon cycling. Water Resources Research, 2016, 52, 7444-7459.	4.2	44
29	Soil depth and soil production. Complexity, 2016, 21, 42-49.	1.6	7
30	Predicting Rates of Weathering Rind Formation. Vadose Zone Journal, 2015, 14, 1-13.	2.2	10
31	Scaling of geochemical reaction rates via advective solute transport. Chaos, 2015, 25, 075403.	2.5	31
32	Gradients and Assumptions Affect Interpretation of Laboratory-Measured Gas-Phase Transport. Soil Science Society of America Journal, 2015, 79, 1018-1029.	2.2	3
33	Gas and solute diffusion in partially saturated porous media: Percolation theory and Effective Medium Approximation compared with lattice Boltzmann simulations. Journal of Geophysical Research: Solid Earth, 2015, 120, 182-190.	3.4	34
34	SATURATION DEPENDENCE OF TRANSPORT IN POROUS MEDIA PREDICTED BY PERCOLATION AND EFFECTIVE MEDIUM THEORIES. Fractals, 2015, 23, 1540004.	3.7	47
35	Exponential growth in <scp>E</scp> bola outbreak since May 14, 2014. Complexity, 2014, 20, 8-11.	1.6	16
36	Saturation Dependence of Solute Diffusion in Porous Media: Universal Scaling Compared with Experiments. Vadose Zone Journal, 2014, 13, 1-6.	2.2	15

#	Article	IF	CITATIONS
37	Theoretical Relationship between Saturated Hydraulic Conductivity and Air Permeability under Dry Conditions: Continuum Percolation Theory. Vadose Zone Journal, 2014, 13, 1-6.	2.2	8
38	Percolation Theory for Flow in Porous Media. Lecture Notes in Physics, 2014, , .	0.7	150
39	Universal scaling of gas diffusion in porous media. Water Resources Research, 2014, 50, 2242-2256.	4.2	39
40	Universal scaling of the formation factor in porous media derived by combining percolation and effective medium theories. Geophysical Research Letters, 2014, 41, 3884-3890.	4.0	68
41	Percolation Theory: Topology and Structure. Lecture Notes in Physics, 2014, , 1-35.	0.7	2
42	Misconceptions. Lecture Notes in Physics, 2014, , 429-434.	0.7	1
43	Properties Relevant for Transport and Transport Applications. Lecture Notes in Physics, 2014, , 37-57.	0.7	1
44	Fractal Models of Porous Media. Lecture Notes in Physics, 2014, , 103-129.	0.7	2
45	Effects of Multi-scale Heterogeneity. Lecture Notes in Physics, 2014, , 409-428.	0.7	0
46	Specific Examples of Critical Path Analysis. Lecture Notes in Physics, 2014, , 131-156.	0.7	0
47	Applications of the Cluster Statistics. Lecture Notes in Physics, 2014, , 313-331.	0.7	0
48	Properties Based on Tortuosity. Lecture Notes in Physics, 2014, , 333-408.	0.7	0
49	Porous Media Primer for Physicists. Lecture Notes in Physics, 2014, , 59-101.	0.7	0
50	Percolation Theory to Reaction and Flow in Geochemical Systems in Soil and Rock. , 2014, , 1-31.		0
51	Hydraulic and Electrical Conductivity: Conductivity Exponents and Critical Path Analysis. Lecture Notes in Physics, 2014, , 157-217.	0.7	0
52	Pressure Saturation Curves and the Critical Volume Fraction for Percolation: Accessibility Function of Percolation Theory. Lecture Notes in Physics, 2014, , 273-296.	0.7	0
53	Applications of the Correlation Length: Scale Effects on Flow. Lecture Notes in Physics, 2014, , 297-312.	0.7	0
54	Other Transport Properties of Porous Media. Lecture Notes in Physics, 2014, , 219-272.	0.7	0

#	Article	IF	CITATIONS
55	Unsaturated hydraulic conductivity modeling for porous media with two fractal regimes. Geoderma, 2013, 207-208, 268-278.	5.1	51
56	Tortuosity in Porous Media: A Critical Review. Soil Science Society of America Journal, 2013, 77, 1461-1477.	2.2	569
57	What's Wrong with Soil Physics?. Soil Science Society of America Journal, 2013, 77, 1877-1887.	2.2	69
58	Percolation Theory Generates a Physically Based Description of Tortuosity in Saturated and Unsaturated Porous Media. Soil Science Society of America Journal, 2013, 77, 1920-1929.	2.2	87
59	Saturation dependence of dispersion in porous media. Physical Review E, 2012, 86, 066316.	2.1	47
60	Estimation of Soil-Water Retention From Particle-Size Distribution. Soil Science, 2012, 177, 321-326.	0.9	22
61	On the origin of slow processes of charge transport in porous media. Philosophical Magazine, 2012, 92, 4628-4648.	1.6	3
62	Unsaturated hydraulic conductivity in porous media: Percolation theory. Geoderma, 2012, 187-188, 77-84.	5.1	84
63	Comparison of the predictions of universal scaling of the saturation dependence of the air permeability with experiment. Water Resources Research, 2012, 48, .	4.2	33
64	Comments on "More general capillary pressure and relative permeability models from fractal geometry―by Kewen Li. Journal of Contaminant Hydrology, 2012, 140-141, 21-23.	3.3	24
65	Dispersion of solutes in porous media. European Physical Journal B, 2011, 80, 411-432.	1.5	66
66	A proposed analysis of saturation-dependent anisotropy for US Department of Energy (DOE) Hanford site soils. Hydrogeology Journal, 2010, 18, 381-403.	2.1	10
67	Incorporation of Effects of Diffusion intoÂAdvection-Mediated Dispersion in Porous Media. Journal of Statistical Physics, 2010, 140, 544-564.	1.2	25
68	Predicting dispersion in porous media. Complexity, 2010, 16, 43-55.	1.6	21
69	Percolation-based effective conductivity calculations for bimodal distributions of local conductances. Philosophical Magazine, 2009, 89, 1989-2007.	1.6	22
70	Relevance of percolation theory to power″aw behavior of dynamic processes including transport in disordered media. Complexity, 2009, 15, 13-27.	1.6	11
71	Effects of Multi-Scale Heterogeneity. Lecture Notes in Physics, 2009, , 287-306.	0.7	0
72	Porous Media Primer for Physicists. Lecture Notes in Physics, 2009, , 57-96.	0.7	1

#	Article	IF	CITATIONS
73	Specific Examples of Critical Path Analysis. Lecture Notes in Physics, 2009, , 97-122.	0.7	1
74	Applications of the Cluster Statistics. Lecture Notes in Physics, 2009, , 247-264.	0.7	0
75	Percolation Theory: Topology and Structure. Lecture Notes in Physics, 2009, , 1-36.	0.7	3
76	Pressure–Saturation Curves and the Critical Volume Fraction for Percolation: Accessibility Function of Percolation Theory. Lecture Notes in Physics, 2009, , 207-231.	0.7	0
77	Properties Relevant for Transport and Transport Applications. Lecture Notes in Physics, 2009, , 37-55.	0.7	0
78	Hydraulic and Electrical Conductivity: Conductivity Exponents and Critical Path Analysis. Lecture Notes in Physics, 2009, , 123-167.	0.7	0
79	Properties based on Tortuosity. Lecture Notes in Physics, 2009, , 265-285.	0.7	1
80	Applications of the Correlation Length: Scale Effects on Flow. Lecture Notes in Physics, 2009, , 233-246.	0.7	0
81	A new conceptual model for forest fires based on percolation theory. Complexity, 2008, 13, 12-17.	1.6	8
82	A Numerical Procedure to Calculate Hydraulic Conductivity for an Arbitrary Pore Size Distribution. Vadose Zone Journal, 2008, 7, 461-472.	2.2	12
83	Longitudinal dispersion of solutes in porous media solely by advection. Philosophical Magazine, 2008, 88, 2921-2944.	1.6	45
84	Pre-seismic electromagnetic phenomena in the framework of percolation and fractal theories. Tectonophysics, 2007, 431, 23-32.	2.2	12
85	Comments on "Fractal Fragmentation, Soil Porosity, and Soil Water Properties: I. Theory― Soil Science Society of America Journal, 2007, 71, 1418-1419.	2.2	9
86	Dependence of the Electrical Conductivity on Saturation in Real Porous Media. Vadose Zone Journal, 2006, 5, 731-741.	2.2	102
87	Spatio-temporal scaling of channels in braided streams. Journal of Hydrology, 2006, 322, 192-198.	5.4	7
88	Percolation Treatment of Charge Transfer in Humidified Smectite Clays. Soil Science Society of America Journal, 2006, 70, 14-23.	2.2	13
89	Scale-dependent hydraulic conductivity in anisotropic media from dimensional cross-over. Hydrogeology Journal, 2006, 14, 499-507.	2.1	30
90	Comment on "Fractal approach to hydraulic properties in unsaturated porous mediaâ€; by Y.F. Xu, Ping Dong [Chaos, Solitons, and Fractals, 19 (2004) 327–337]. Chaos, Solitons and Fractals, 2006, 28, 278-281.	5.1	2

#	Article	IF	CITATIONS
91	Distribution of hydraulic conductivity in single scale anisotropy. Philosophical Magazine, 2006, 86, 2407-2428.	1.6	21
92	Hydraulic Conductivity Limited Equilibration: Effect on Water Retention Characteristics. Vadose Zone Journal, 2005, 4, 145-150.	2.2	19
93	Continuum percolation theory for transport properties in porous media. Philosophical Magazine, 2005, 85, 3409-3434.	1.6	34
94	Basic transport properties in natural porous media: Continuum percolation theory and fractal model. Complexity, 2005, 10, 22-37.	1.6	23
95	Comment on "Modeling Low-frequency Magnetic-field Precursors to the Loma Prieta Earthquake with a Precursory Increase in Fault-zone Conductivity,―by M. Merzer and S. L. Klemperer. Pure and Applied Geophysics, 2005, 162, 2573-2575.	1.9	4
96	Percolation theory and the future of hydrogeology. Hydrogeology Journal, 2005, 13, 202-205.	2.1	12
97	Assessment of the application of percolation theory to a water repellent soil. Soil Research, 2005, 43, 357.	1.1	28
98	Unfolding the relation between global temperature and ENSO. Geophysical Research Letters, 2005, 32, .	4.0	42
99	Continuum Percolation Theory for Saturation Dependence of Air Permeability. Vadose Zone Journal, 2005, 4, 134-138.	2.2	23
100	Comparing van Genuchten and Percolation Theoretical Formulations of the Hydraulic Properties of Unsaturated Media. Vadose Zone Journal, 2004, 3, 1483-1488.	2.2	19
101	Continuum percolation theory for water retention and hydraulic conductivity of fractal soils: estimation of the critical volume fraction for percolation. Advances in Water Resources, 2004, 27, 175-183.	3.8	57
102	Percolative transport in fractal porous media. Chaos, Solitons and Fractals, 2004, 19, 309-325.	5.1	79
103	An explicit derivation of an exponential dependence of the hydraulic conductivity on relative saturation. Advances in Water Resources, 2004, 27, 197-201.	3.8	14
104	Continuum percolation theory for pressure–saturation characteristics of fractal soils: extension to non-equilibrium. Advances in Water Resources, 2004, 27, 245-257.	3.8	39
105	Continuum percolation theory and Archie's law. Geophysical Research Letters, 2004, 31, .	4.0	65
106	Climatic influences on Holocene variations in soil erosion rates on a small hill in the Mojave Desert. Geomorphology, 2004, 58, 263-289.	2.6	24
107	Continuum percolation theory for natural porous media. Developments in Water Science, 2004, 55, 107-114.	0.1	1
108	Comparing van Genuchten and Percolation Theoretical Formulations of the Hydraulic Properties of Unsaturated Media. Vadose Zone Journal, 2004, 3, 1483-1488.	2.2	5

#	Article	IF	CITATIONS
109	Effects of Bubbles on the Hydraulic Conductivity of Porous Materials – Theoretical Results. Transport in Porous Media, 2003, 52, 51-65.	2.6	11
110	On the relation between ENSO and global climate change. Meteorology and Atmospheric Physics, 2003, 84, 229-242.	2.0	47
111	Tests of predicted downstream transport of clasts in turbulent flow. Advances in Water Resources, 2003, 26, 1205-1211.	3.8	12
112	Some comments on the scale dependence of the hydraulic conductivity in the presence of nested heterogeneity. Advances in Water Resources, 2003, 26, 71-77.	3.8	30
113	ON THE VANISHING OF SOLUTE DIFFUSION IN POROUS MEDIA AT A THRESHOLD MOISTURE CONTENT. Soil Science Society of America Journal, 2003, 67, 1701-1702.	2.2	53
114	Wet-End Deviations from Scaling of the Water Retention Characteristics of Fractal Porous Media. Vadose Zone Journal, 2003, 2, 759-765.	2.2	2
115	Wetâ€End Deviations from Scaling of the Water Retention Characteristics of Fractal Porous Media. Vadose Zone Journal, 2003, 2, 759-765.	2.2	21
116	Water-Retention of Fractal Soil Models Using Continuum Percolation Theory: Tests of Hanford Site Soils. Vadose Zone Journal, 2002, 1, 252-260.	2.2	21
117	Waterâ€Retention of Fractal Soil Models Using Continuum Percolation Theory: Tests of Hanford Site Soils. Vadose Zone Journal, 2002, 1, 252-260.	2.2	55
118	Slow Conductivity Relaxation in the Fermi Glass. Physica Status Solidi (B): Basic Research, 2002, 230, 55-59.	1.5	1
119	The thermodynamic influence of subgrid orography in a global climate model. Climate Dynamics, 2002, 20, 31-44.	3.8	14
120	Application of critical path analysis to fractal porous media: comparison with examples from the Hanford site. Advances in Water Resources, 2002, 25, 129-146.	3.8	123
121	Ac hopping conduction: Perspective from percolation theory. The Philosophical Magazine: Physics of Condensed Matter B, Statistical Mechanics, Electronic, Optical and Magnetic Properties, 2001, 81, 875-913.	0.6	72
122	Michael Pollak and transport in disordered systems. The Philosophical Magazine: Physics of Condensed Matter B, Statistical Mechanics, Electronic, Optical and Magnetic Properties, 2001, 81, 813-817.	0.6	2
123	Applications of percolation theory to porous media with distributed local conductances. Advances in Water Resources, 2001, 24, 279-307.	3.8	197
124	Ac hopping conduction: perspective from percolation theory. The Philosophical Magazine: Physics of Condensed Matter B, Statistical Mechanics, Electronic, Optical and Magnetic Properties, 2001, 81, 875-913.	0.6	26
125	Percolation Cluster Statistics and Conductivity Semi-Variograms. Transport in Porous Media, 2000, 39, 131-141.	2.6	16
126	Fragility of liquids using percolation-based transport theories. Journal of Non-Crystalline Solids, 2000, 274, 93-101.	3.1	5

#	Article	IF	CITATIONS
127	The Pacific decadal oscillation and longâ€ŧerm climate prediction. Eos, 2000, 81, 581-581.	0.1	3
128	[Commnet on "Seismic predictors of El Niño revisitedâ€] Comment on an atmospheric stochastic trigger for El Niño. Eos, 2000, 81, 266.	0.1	3
129	Mixed-alkali effect: some new results. Journal of Non-Crystalline Solids, 1999, 255, 47-55.	3.1	26
130	A probabilistic treatment of fluvial entrainment of cohesionless particles. Journal of Geophysical Research, 1999, 104, 15409-15413.	3.3	8
131	Upscaling in Subsurface Transport Using Cluster Statistics of Percolation. Transport in Porous Media, 1998, 30, 177-198.	2.6	51
132	A new calculation of 1/fnoise in disordered systems with hopping transport. Journal of Physics Condensed Matter, 1998, 10, L303-L310.	1.8	6
133	The mixed-alkali effect discussed within the context of percolative transport. Journal of Non-Crystalline Solids, 1997, 220, 1-16.	3.1	21
134	Some comments on the dynamics of super-cooled liquids near the glass transition. Journal of Non-Crystalline Solids, 1996, 195, 293-303.	3.1	10
135	Comment on ?fractal and superdiffusive transport and hydrodynamic dispersion in heterogeneous porous media?, by Muhammad Sahimi. Transport in Porous Media, 1995, 21, 175-188.	2.6	2
136	Comment on â€~â€~Correlation functions for ionic motion from NMR relaxation and electrical conductivity in the glassy fast-ion conductor (Li2S)0.56(SiS2)0.44''. Physical Review B, 1995, 51, 12000-12002.	3.2	1
137	Deducing low-frequency scaling of transport properties in an inhomogeneous medium from thermodynamics and geometry. The Philosophical Magazine: Physics of Condensed Matter B, Statistical Mechanics, Electronic, Optical and Magnetic Properties, 1995, 72, 401-415.	0.6	2
138	Approximate power-law conductivity in the multiple-hopping regime. Journal of Non-Crystalline Solids, 1995, 183, 109-121.	3.1	16
139	PERCOLATIVE ASPECTS OF VISCOUS FLOW NEAR THE GLASS TRANSITION. International Journal of Modern Physics B, 1994, 08, 855-864.	2.0	5
140	New developments in the theory of the hopping conductivity of spatially random systems. Journal of Physics Condensed Matter, 1994, 6, 1239-1252.	1.8	16
141	Universal scaling of the dielectric relaxation in dipole liquids and glasses. Journal of Physics Condensed Matter, 1994, 6, 8087-8102.	1.8	15
142	Finite-size effects on the glass transition temperature. Solid State Communications, 1994, 90, 527-532.	1.9	21
143	An explanation for the Kauzmann â€~paradox' and its relation to relaxation times. Journal of Non-Crystalline Solids, 1994, 175, 129-136.	3.1	15
144	The pressure dependence of the glass transition temperature in some ionic liquids. Journal of Non-Crystalline Solids, 1994, 176, 288-293.	3.1	7

#	Article	IF	CITATIONS
145	Statistical and percolation effects on ionic conduction in amorphous systems. Journal of Non-Crystalline Solids, 1994, 175, 59-70.	3.1	29
146	An explanation for the observed correlation between the decoupling index and the K-W-W stretching parameter. Journal of Non-Crystalline Solids, 1994, 168, 258-264.	3.1	13
147	A general treatment of 1-dimensional hopping conduction. Solid State Communications, 1993, 86, 765-768.	1.9	22
148	An explanation for the correlation between the glass transition temperature and the extrapolated divergence of the viscosity in Vogel-Fulcher phenomenology. Solid State Communications, 1993, 88, 377-379.	1.9	10
149	A master equation for reactive solute transport in porous media. Stochastic Hydrology & Hydraulics, 1993, 7, 255-268.	0.5	9
150	Dielectric relaxation in dipole glasses, and thermal relaxation and the glass transition in systems with a maximum relaxation time. Journal of Non-Crystalline Solids, 1993, 160, 42-51.	3.1	4
151	Non-Debye relaxation and the glass transition. Journal of Non-Crystalline Solids, 1993, 160, 183-227.	3.1	110
152	Comment on 'A probabilistic mechanism hidden behind the universal power law for dielectric relaxation: general relaxation equation' (and reply). Journal of Physics Condensed Matter, 1992, 4, 10503-10512.	1.8	9
153	The low frequency conductivity of the Fermi glass. Journal of Physics Condensed Matter, 1992, 4, 6957-6970.	1.8	28
154	A simple connection between the melting temperature and the glass temperature in a kinetic theory of the glass transition. Journal of Physics Condensed Matter, 1992, 4, L429-L431.	1.8	12
155	Some universalities in the relaxation of glasses. Journal of Non-Crystalline Solids, 1992, 144, 21-31.	3.1	27
156	Transport in ionic conducting glasses. II. Scaling relations and approximate power law behaviour. Journal of Physics Condensed Matter, 1992, 4, 5371-5381.	1.8	14
157	A purely kinetic justification for application of Ehrenfest theorems to the glass transition. Solid State Communications, 1992, 84, 263-266.	1.9	15
158	Dielectric and mechanical relaxation in liquids and glasses; transition from effective medium to percolation treatments. Solid State Communications, 1992, 84, 701-704.	1.9	24
159	Transport in ionic conducting glasses. Journal of Physics Condensed Matter, 1991, 3, 7831-7842.	1.8	43
160	A percolation treatment of the ac hopping conductivity at low frequencies and dimensionalities. Journal of Non-Crystalline Solids, 1991, 134, 287-292.	3.1	20
161	The calorimetric glass transition. A simple model. The Philosophical Magazine: Physics of Condensed Matter B, Statistical Mechanics, Electronic, Optical and Magnetic Properties, 1991, 64, 563-577.	0.6	16
162	The ac conductivity of the Fermi glass: A model for glassy conduction. Solid State Communications, 1991, 80, 151-155.	1.9	23

#	Article	IF	CITATIONS
163	The frequency dependent conductivity of the electron glass. Physics Letters, Section A: General, Atomic and Solid State Physics, 1991, 156, 502-508.	2.1	6
164	The a.c. conductivity of variable range hopping systems such as amorphous semiconductors. The Philosophical Magazine: Physics of Condensed Matter B, Statistical Mechanics, Electronic, Optical and Magnetic Properties, 1991, 64, 579-589.	0.6	37
165	One-dimensional hopping conductivity calculations. The Philosophical Magazine: Physics of Condensed Matter B, Statistical Mechanics, Electronic, Optical and Magnetic Properties, 1991, 64, 327-334.	0.6	12
166	Incorporation of finite temperature structure and statistics into conductivity calculations in the Coulomb gap. Physics Letters, Section A: General, Atomic and Solid State Physics, 1990, 151, 187-190.	2.1	4
167	Frequency-dependent conductivity in glasses. Journal of Physics Condensed Matter, 1990, 2, 9055-9063.	1.8	18
168	An elementary treatment of sequential correlations in non-local relaxation. Philosophical Magazine Letters, 1990, 62, 399-405.	1.2	4
169	Approximate thermodynamical treatment of the Coulomb gap. Philosophical Magazine Letters, 1990, 62, 371-376.	1.2	16
170	Relationship between the conductivity and the glass temperature for hopping systems. Physical Review B, 1989, 39, 11154-11155.	3.2	9
171	Cohesive energies in certain sequences of cubic and square lattices. The Philosophical Magazine: Physics of Condensed Matter B, Statistical Mechanics, Electronic, Optical and Magnetic Properties, 1986, 53, 353-366.	0.6	3
172	Very slow relaxation in systems lacking translational symmetry, with emphasis on disordered insulators. The Philosophical Magazine: Physics of Condensed Matter B, Statistical Mechanics, Electronic, Optical and Magnetic Properties, 1985, 52, 391-402.	0.6	8
173	A theory for the width of the Coulomb gap. Journal of Physics C: Solid State Physics, 1985, 18, 5325-5334.	1.5	7
174	Ultra-slow processes in disordered insulators. Journal of Non-Crystalline Solids, 1985, 77-78, 131-134.	3.1	0