Zhentao Luo

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3867512/publications.pdf

Version: 2024-02-01

136885 330025 7,799 36 32 37 citations h-index g-index papers 38 38 38 7092 docs citations times ranked citing authors all docs

#	Article	IF	Citations
1	From Aggregation-Induced Emission of Au(I)–Thiolate Complexes to Ultrabright Au(0)@Au(I)–Thiolate Core–Shell Nanoclusters. Journal of the American Chemical Society, 2012, 134, 16662-16670.	6.6	1,340
2	Luminescent Metal Nanoclusters with Aggregation-Induced Emission. Journal of Physical Chemistry Letters, 2016, 7, 962-975.	2.1	595
3	Identification of a Highly Luminescent Au ₂₂ (SG) ₁₈ Nanocluster. Journal of the American Chemical Society, 2014, 136, 1246-1249.	6.6	490
4	Engineering ultrasmall water-soluble gold and silver nanoclusters for biomedical applications. Chemical Communications, 2014, 50, 5143-5155.	2.2	394
5	Ultrasmall Au _{10â^12} (SG) _{10â^12} Nanomolecules for High Tumor Specificity and Cancer Radiotherapy. Advanced Materials, 2014, 26, 4565-4568.	11.1	386
6	Synthesis of Highly Fluorescent Metal (Ag, Au, Pt, and Cu) Nanoclusters by Electrostatically Induced Reversible Phase Transfer. ACS Nano, 2011, 5, 8800-8808.	7.3	362
7	Glutathione-Protected Silver Nanoclusters as Cysteine-Selective Fluorometric and Colorimetric Probe. Analytical Chemistry, 2013, 85, 1913-1919.	3.2	312
8	Enhanced Tumor Accumulation of Subâ \in 2 nm Gold Nanoclusters for Cancer Radiation Therapy. Advanced Healthcare Materials, 2014, 3, 133-141.	3.9	309
9	Luminescent Noble Metal Nanoclusters as an Emerging Optical Probe for Sensor Development. Chemistry - an Asian Journal, 2013, 8, 858-871.	1.7	299
10	Toward Understanding the Growth Mechanism: Tracing All Stable Intermediate Species from Reduction of Au(I)–Thiolate Complexes to Evolution of Au ₂₅ Nanoclusters. Journal of the American Chemical Society, 2014, 136, 10577-10580.	6.6	294
11	Atomicâ€Precision Gold Clusters for NIRâ€II Imaging. Advanced Materials, 2019, 31, e1901015.	11.1	279
12	Balancing the Rate of Cluster Growth and Etching for Gramâ€Scale Synthesis of Thiolateâ€Protected Au ₂₅ Nanoclusters with Atomic Precision. Angewandte Chemie - International Edition, 2014, 53, 4623-4627.	7.2	276
13	Hierarchically Structured Co3O4@Pt@MnO2 Nanowire Arrays for High-Performance Supercapacitors. Scientific Reports, 2013, 3, 2978.	1.6	234
14	Ultrasmall Glutathione-Protected Gold Nanoclusters as Next Generation Radiotherapy Sensitizers with High Tumor Uptake and High Renal Clearance. Scientific Reports, 2015, 5, 8669.	1.6	212
15	Lighting up thiolated Au@Ag nanoclusters via aggregation-induced emission. Nanoscale, 2014, 6, 157-161.	2.8	186
16	Engineering gold-based radiosensitizers for cancer radiotherapy. Materials Horizons, 2017, 4, 817-831.	6.4	173
17	Theranostic vitamin E TPGS micelles of transferrin conjugation for targeted co-delivery of docetaxel and ultra bright gold nanoclusters. Biomaterials, 2015, 39, 234-248.	5.7	169
18	Observation of Cluster Size Growth in CO-Directed Synthesis of Au ₂₅ (SR) ₁₈ Nanoclusters. ACS Nano, 2012, 6, 7920-7927.	7.3	157

#	Article	IF	CITATIONS
19	Nanostructured LiMn2O4 and their composites as high-performance cathodes for lithium-ion batteries. Progress in Natural Science: Materials International, 2012, 22, 572-584.	1.8	137
20	Boiling water synthesis of ultrastable thiolated silver nanoclusters with aggregation-induced emission. Chemical Communications, 2015, 51, 15165-15168.	2.2	128
21	The potent antimicrobial properties of cell penetrating peptide-conjugated silver nanoparticles with excellent selectivity for Gram-positive bacteria over erythrocytes. Nanoscale, 2013, 5, 3834.	2.8	120
22	Amphiphilic Polymeric Nanocarriers with Luminescent Gold Nanoclusters for Concurrent Bioimaging and Controlled Drug Release. Advanced Functional Materials, 2013, 23, 4324-4331.	7.8	105
23	Energy Transfer between Conjugated-Oligoelectrolyte-Substituted POSS and Gold Nanocluster for Multicolor Intracellular Detection of Mercury Ion. Journal of Physical Chemistry C, 2011, 115, 13069-13075.	1.5	100
24	Precursor engineering and controlled conversion for the synthesis of monodisperse thiolate-protected metal nanoclusters. Nanoscale, 2013, 5, 4606.	2.8	100
25	Molecular-Scale Ligand Effects in Small Gold–Thiolate Nanoclusters. Journal of the American Chemical Society, 2018, 140, 15430-15436.	6.6	90
26	Synthesis of Water-Soluble [Au ₂₅ (SR) ₁₈] ^{â^'} Using a Stoichiometric Amount of NaBH ₄ . Journal of the American Chemical Society, 2018, 140, 11370-11377.	6.6	90
27	Structure and formation of highly luminescent protein-stabilized gold clusters. Chemical Science, 2018, 9, 2782-2790.	3.7	76
28	Tailoring the protein conformation to synthesize different-sized gold nanoclusters. Chemical Communications, 2013, 49, 9740.	2.2	59
29	Facile synthesis of water-soluble Au25–xAgx nanoclusters protected by mono- and bi-thiolate ligands. Chemical Communications, 2014, 50, 7459.	2.2	59
30	Storage of Gold Nanoclusters in Muscle Leads to their Biphasic in Vivo Clearance. Small, 2015, 11, 1683-1690.	5.2	55
31	Assembly of Nanoions via Electrostatic Interactions: Ion-Like Behavior of Charged Noble Metal Nanoclusters. Scientific Reports, 2014, 4, 3848.	1.6	47
32	Traveling through the Desalting Column Spontaneously Transforms Thiolated Ag Nanoclusters from Nonluminescent to Highly Luminescent. Journal of Physical Chemistry Letters, 2013, 4, 1811-1815.	2.1	31
33	Synthesis of thiolate-protected Au nanoparticles revisited: U-shape trend between the size of nanoparticles and thiol-to-Au ratio. Chemical Communications, 2016, 52, 9522-9525.	2.2	24
34	Solvent Controls the Formation of Au ₂₉ (SR) ₂₀ Nanoclusters in the COâ€Reduction Method. Particle and Particle Systems Characterization, 2014, 31, 652-656.	1.2	22
35	Nanostructured lithium titanate and lithium titanate/carbon nanocomposite as anode materials for advanced lithium-ion batteries. Nanotechnology Reviews, 2014, 3, .	2.6	17
36	Radiosensitizers: Enhanced Tumor Accumulation of Sub-2 nm Gold Nanoclusters for Cancer Radiation Therapy (Adv. Healthcare Mater. 1/2014). Advanced Healthcare Materials, 2014, 3, 152-152.	3.9	9

3