J Kalervo Hiltunen

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3867464/publications.pdf Version: 2024-02-01

		81434	100535
127	5,839	41	70
papers	citations	h-index	g-index
132	132	132	7352
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	Expression and analysis of the SAM-dependent RNA methyltransferase Rsm22 from <i>Saccharomyces cerevisiae</i> . Acta Crystallographica Section D: Structural Biology, 2021, 77, 840-853.	1.1	7
2	Genetic dissection of the mitochondrial lipoylation pathway in yeast. BMC Biology, 2021, 19, 14.	1.7	13
3	A hunt for OM45 synthetic petite interactions in Saccharomyces cerevisiae reveals a role for Miro GTPase Gem1p in cristae structure maintenance. MicrobiologyOpen, 2021, 10, e1238.	1.2	1
4	Estradiol Valerate in COC Has More Favorable Inflammatory Profile Than Synthetic Ethinyl Estradiol: A Randomized Trial. Journal of Clinical Endocrinology and Metabolism, 2020, 105, e2483-e2490.	1.8	13
5	Crystallographic binding studies of rat peroxisomal multifunctional enzyme type 1 with 3-ketodecanoyl-CoA: capturing active and inactive states of its hydratase and dehydrogenase catalytic sites. Acta Crystallographica Section D: Structural Biology, 2020, 76, 1256-1269.	1.1	4
6	Mitochondrial 2,4-dienoyl-CoA reductase (Decr) deficiency and impairment of thermogenesis in mouse brown adipose tissue. Scientific Reports, 2019, 9, 12038.	1.6	9
7	Mitochondrial acyl carrier protein (ACP) at the interface of metabolic state sensing and mitochondrial function. Biochimica Et Biophysica Acta - Molecular Cell Research, 2019, 1866, 118540.	1.9	39
8	17B-hydroxysteroid dehydrogenases as acyl thioester metabolizing enzymes. Molecular and Cellular Endocrinology, 2019, 489, 107-118.	1.6	30
9	Impaired Mitochondrial Fatty Acid Synthesis Leads to Neurodegeneration in Mice. Journal of Neuroscience, 2018, 38, 9781-9800.	1.7	28
10	Different opinion on the reported role of Poldip2 and ACSM1 in a mammalian lipoic acid salvage pathway controlling HIF-1 activation. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, E7458-E7459.	3.3	4
11	Non-electron transfer chain mitochondrial defects differently regulate HIF-1α degradation and transcription. Redox Biology, 2017, 12, 1052-1061.	3.9	18
12	Genetic modifications of Mecr reveal a role for mitochondrial 2-enoyl-CoA/ACP reductase in placental development in mice. Human Molecular Genetics, 2017, 26, 2104-2117.	1.4	31
13	Expanding Toolbox of Imageable Protein-Gold Hybrid Materials. Chemistry of Materials, 2017, 29, 8440-8448.	3.2	17
14	Mitochondrial fatty acid synthesis, fatty acids and mitochondrial physiology. Biochimica Et Biophysica Acta - Molecular and Cell Biology of Lipids, 2017, 1862, 39-48.	1.2	105
15	<i>Trim37</i> -deficient mice recapitulate several features of the multi-organ disorder Mulibrey nanism. Biology Open, 2016, 5, 584-595.	0.6	19
16	Dual targeted poplar ferredoxin NADP+ oxidoreductase interacts with hemoglobin 1. Plant Science, 2016, 247, 138-149.	1.7	7
17	MECR Mutations Cause Childhood-Onset Dystonia and Optic Atrophy, a Mitochondrial Fatty Acid Synthesis Disorder. American Journal of Human Genetics, 2016, 99, 1229-1244.	2.6	91
18	A monoclonal antibody raised against bacterially expressed MPV17 sequences shows peroxisomal, endosomal and lysosomal localisation in U2OS cells. BMC Research Notes, 2016, 9–128	0.6	4

#	Article	IF	CITATIONS
19	Peroxisomal Pex11 is a pore-forming protein homologous to TRPM channels. Biochimica Et Biophysica Acta - Molecular Cell Research, 2016, 1863, 271-283.	1.9	49
20	Cross-Linked Proteins with Gold Nanoclusters: A Dual-Purpose pH-Responsive Material for Controllable Cell Imaging and Antibiotic Delivery. Particle and Particle Systems Characterization, 2015, 32, 749-755.	1.2	14
21	The Human Mitochondrial DNA Depletion Syndrome Gene MPV17 Encodes a Non-selective Channel That Modulates Membrane Potential. Journal of Biological Chemistry, 2015, 290, 13840-13861.	1.6	61
22	Phytol is lethal for Amacr-deficient mice. Biochimica Et Biophysica Acta - Molecular and Cell Biology of Lipids, 2015, 1851, 1394-1405.	1.2	11
23	Quantitative Changes in <i>Gimap3</i> and <i>Gimap5</i> Expression Modify Mitochondrial DNA Segregation in Mice. Genetics, 2015, 200, 221-235.	1.2	8
24	Role of AMACR (α-methylacyl-CoA racemase) and MFE-1 (peroxisomal multifunctional enzyme-1) in bile acid synthesis in mice. Biochemical Journal, 2014, 461, 125-135.	1.7	15
25	Dithiothreitol-capped fluorescent gold nanoclusters: An efficient probe for detection of copper(II) ions in aqueous solution. Biosensors and Bioelectronics, 2014, 59, 216-220.	5.3	96
26	Templated in-situ synthesis of gold nanoclusters conjugated to drug target bacterial enoyl-ACP reductase, and their application to the detection of mercury ions using a test stripe. Mikrochimica Acta, 2014, 181, 1029-1034.	2.5	15
27	Insights into mitochondrial fatty acid synthesis from the structure of heterotetrameric 3-ketoacyl-ACP reductase/3R-hydroxyacyl-CoA dehydrogenase. Nature Communications, 2014, 5, 4805.	5.8	42
28	Synthesis of fluorescent α-chymotrypsin A-functionalized gold nanoclusters and their application to blot-based technology for Hg ²⁺ detection. RSC Advances, 2014, 4, 31536.	1.7	19
29	Peroxisomal membrane channel Pxmp2 in the mammary fat pad is essential for stromal lipid homeostasis and for development of mammary gland epithelium in mice. Developmental Biology, 2014, 391, 66-80.	0.9	23
30	Metabolic adaptation allows Amacr-deficient mice to remain symptom-free despite low levels of mature bile acids. Biochimica Et Biophysica Acta - Molecular and Cell Biology of Lipids, 2013, 1831, 1335-1343.	1.2	11
31	Quaternary structure of human, <i>Drosophila melanogaster</i> and <i>Caenorhabditis elegans</i> MFEâ€2 in solution from synchrotron smallâ€angle Xâ€ray scattering. FEBS Letters, 2013, 587, 305-310.	1.3	5
32	Defects in mitochondrial fatty acid synthesis result in failure of multiple aspects of mitochondrial biogenesis in <i><scp>S</scp>accharomyces cerevisiae</i> . Molecular Microbiology, 2013, 90, 824-840.	1.2	45
33	Dietary intake of n-3 long-chain polyunsaturated fatty acids and risk of myocardial infarction in coronary artery disease patients with or without diabetes mellitus: a prospective cohort study. BMC Medicine, 2013, 11, 216.	2.3	20
34	On the Molecular Basis of D-Bifunctional Protein Deficiency Type III. PLoS ONE, 2013, 8, e53688.	1.1	7
35	Apicoplast and Endoplasmic Reticulum Cooperate in Fatty Acid Biosynthesis in Apicomplexan Parasite Toxoplasma gondii. Journal of Biological Chemistry, 2012, 287, 4957-4971.	1.6	138
36	Transfer of metabolites across the peroxisomal membrane. Biochimica Et Biophysica Acta - Molecular Basis of Disease, 2012, 1822, 1374-1386.	1.8	121

#	Article	IF	CITATIONS
37	Measurements of intracellularATP provide new insight into the regulation of glycolysis in the yeast Saccharomyces cerevisiae. Integrative Biology (United Kingdom), 2012, 4, 99-107.	0.6	25
38	The Enolization Chemistry of a Thioester-Dependent Racemase: The 1.4 Ã Crystal Structure of a Reaction Intermediate Complex Characterized by Detailed QM/MM Calculations. Journal of Physical Chemistry B, 2012, 116, 3619-3629.	1.2	16
39	Channel-Forming Activities in the Glycosomal Fraction from the Bloodstream Form of Trypanosoma brucei. PLoS ONE, 2012, 7, e34530.	1.1	46
40	Peroxisomal multifunctional enzyme typeÂ2 from the fruitfly: dehydrogenase and hydratase act as separate entities, as revealed by structure and kinetics. Biochemical Journal, 2011, 435, 771-781.	1.7	23
41	Mitochondrial fatty acid synthesis and respiration. Biochimica Et Biophysica Acta - Bioenergetics, 2010, 1797, 1195-1202.	0.5	119
42	Mitochondrial fatty acid synthesis and respiration. Biochimica Et Biophysica Acta - Bioenergetics, 2010, 1797, 78.	0.5	1
43	Protein phosphorylation in mitochondria – A study on fermentative and respiratory growth of <i>Saccharomyces cerevisiae</i> . Electrophoresis, 2010, 31, 2869-2881.	1.3	14
44	Crystal Structure of Liganded Rat Peroxisomal Multifunctional Enzyme Type 1. Journal of Biological Chemistry, 2010, 285, 24089-24098.	1.6	24
45	Identification of a Substrate-binding Site in a Peroxisomal β-Oxidation Enzyme by Photoaffinity Labeling with a Novel Palmitoyl Derivative. Journal of Biological Chemistry, 2010, 285, 26315-26325.	1.6	11
46	Mitochondrial fatty acid synthesis – An adopted set of enzymes making a pathway of major importance for the cellular metabolism. Progress in Lipid Research, 2010, 49, 27-45.	5.3	80
47	Peroxisomes Are Oxidative Organelles. Antioxidants and Redox Signaling, 2010, 13, 525-537.	2.5	186
48	Pxmp2 Is a Channel-Forming Protein in Mammalian Peroxisomal Membrane. PLoS ONE, 2009, 4, e5090.	1.1	126
49	Mitochondrial Fatty Acid Synthesis Type II: More than Just Fatty Acids. Journal of Biological Chemistry, 2009, 284, 9011-9015.	1.6	144
50	Lipoic Acid Synthesis and Attachment in Yeast Mitochondria. Journal of Biological Chemistry, 2009, 284, 23234-23242.	1.6	110
51	Characterization of two cotton cDNAs encoding trans-2-enoyl-CoA reductase reveals a putative novel NADPH-binding motif. Journal of Experimental Botany, 2009, 60, 1839-1848.	2.4	18
52	Heterologous Expression of Mycobacterial Proteins in <i>Saccharomyces cerevisiae</i> Reveals Two Physiologically Functional 3-Hydroxyacyl-Thioester Dehydratases, HtdX and HtdY, in Addition to HadABC and HtdZ. Journal of Bacteriology, 2009, 191, 2683-2690.	1.0	18
53	17βâ€Hydroxysteroid dehydrogenase type 8 and carbonyl reductase type 4 assemble as a ketoacyl reductase of human mitochondrial FAS. FASEB Journal, 2009, 23, 3682-3691.	0.2	57
54	Channelâ€forming activities of peroxisomal membrane proteins from the yeast <i>Saccharomycesâ€fcerevisiae</i> . FEBS Journal, 2009, 276, 1698-1708.	2.2	23

#	Article	IF	CITATIONS
55	Avoiding unscheduled transcription in shared promoters:Saccharomyces cerevisiaeSum1p represses the divergent gene pairSPS18-SPS19through a midsporulation element (MSE). FEMS Yeast Research, 2009, 9, 821-831.	1.1	2
56	An involvement of yeast peroxisomal channels in transmembrane transfer of glyoxylate cycle intermediates. International Journal of Biochemistry and Cell Biology, 2009, 41, 2546-2554.	1.2	20
57	Mitochondrial 2,4-dienoyl-CoA Reductase Deficiency in Mice Results in Severe Hypoglycemia with Stress Intolerance and Unimpaired Ketogenesis. PLoS Genetics, 2009, 5, e1000543.	1.5	47
58	Myocardial Overexpression of Mecr, a Gene of Mitochondrial FAS II Leads to Cardiac Dysfunction in Mouse. PLoS ONE, 2009, 4, e5589.	1.1	23
59	Peroxisomal Δ ³ ,Δ ² â€enoyl CoA isomerases and evolution of cytosolic paralogues in embryophytes. Plant Journal, 2008, 56, 728-742.	2.8	23
60	The 3â€hydroxyacylâ€ACP dehydratase of mitochondrial fatty acid synthesis in <i>Trypanosoma brucei</i> . FEBS Letters, 2008, 582, 729-733.	1.3	21
61	Structural Enzymological Studies of 2-Enoyl Thioester Reductase of the Human Mitochondrial FAS II Pathway: New Insights into Its Substrate Recognition Properties. Journal of Molecular Biology, 2008, 379, 830-844.	2.0	45
62	Function of Heterologous Mycobacterium tuberculosis InhA, a Type 2 Fatty Acid Synthase Enzyme Involved in Extending C 20 Fatty Acids to C 60 -to-C 90 Mycolic Acids, during De Novo Lipoic Acid Synthesis in Saccharomyces cerevisiae. Applied and Environmental Microbiology, 2008, 74, 5078-5085.	1.4	35
63	Intersection of RNA Processing and the Type II Fatty Acid Synthesis Pathway in Yeast Mitochondria. Molecular and Cellular Biology, 2008, 28, 6646-6657.	1.1	48
64	Identification of a Novel Mycobacterial 3-Hydroxyacyl-Thioester Dehydratase, HtdZ (Rv0130), by Functional Complementation in Yeast. Journal of Bacteriology, 2008, 190, 4088-4090.	1.0	10
65	An ancient genetic link between vertebrate mitochondrial fatty acid synthesis and RNA processing. FASEB Journal, 2008, 22, 569-578.	0.2	56
66	Enhanced Polyamine Catabolism Alters Homeostatic Control of White Adipose Tissue Mass, Energy Expenditure, and Glucose Metabolism. Molecular and Cellular Biology, 2007, 27, 4953-4967.	1.1	120
67	Saturated Very-Long-Chain Fatty Acids Promote Cotton Fiber and <i>Arabidopsis</i> Cell Elongation by Activating Ethylene Biosynthesis. Plant Cell, 2007, 19, 3692-3704.	3.1	258
68	UK114, a YjgF/Yer057p/UK114 family protein highly conserved from bacteria to mammals, is localized in rat liver peroxisomes. Biochemical and Biophysical Research Communications, 2007, 357, 252-257.	1.0	8
69	The Catalysis of the 1,1-Proton Transfer by α-Methyl-acyl-CoA Racemase Is Coupled to a Movement of the Fatty Acyl Moiety Over a Hydrophobic, Methionine-rich Surface. Journal of Molecular Biology, 2007, 367, 1145-1161.	2.0	39
70	Mutational Spectrum of d-Bifunctional Protein Deficiency and Structure-Based Genotype-Phenotype Analysis. American Journal of Human Genetics, 2006, 78, 112-124.	2.6	80
71	Structural Studies of MFE-1: the 1.9Ã Crystal Structure of the Dehydrogenase Part of Rat Peroxisomal MFE-1. Journal of Molecular Biology, 2006, 355, 734-746.	2.0	11
72	Crystal Structure of Yeast Peroxisomal Multifunctional Enzyme: Structural Basis for Substrate Specificity of (3R)-hydroxyacyl-CoA Dehydrogenase Units. Journal of Molecular Biology, 2006, 358, 1286-1295.	2.0	15

#	Article	IF	CITATIONS
73	Localization of a portion of the liver isoform of fatty-acid-binding protein (L-FABP) to peroxisomes. Biochemical Journal, 2006, 394, 475-484.	1.7	38
74	Peroxisomal β-oxidation—A metabolic pathway with multiple functions. Biochimica Et Biophysica Acta - Molecular Cell Research, 2006, 1763, 1413-1426.	1.9	432
75	Peroxisomal membrane permeability and solute transfer. Biochimica Et Biophysica Acta - Molecular Cell Research, 2006, 1763, 1697-1706.	1.9	65
76	Genetic and biochemical studies in yeast reveal that the cotton fibre-specific GhCER6 gene functions in fatty acid elongation. Journal of Experimental Botany, 2006, 58, 473-481.	2.4	47
77	Identification and Functional Characterization of a Monofunctional Peroxisomal Enoyl-CoA Hydratase 2 That Participates in the Degradation of Even cis-Unsaturated Fatty Acids in Arabidopsis thaliana. Journal of Biological Chemistry, 2006, 281, 35894-35903.	1.6	32
78	Cloning and functional characterization of two cDNAs encoding NADPH-dependent 3-ketoacyl-CoA reductased from developing cotton fibers. Cell Research, 2005, 15, 465-473.	5.7	37
79	Structural biology of the thioester-dependent degradation and synthesis of fatty acids. Current Opinion in Structural Biology, 2005, 15, 621-628.	2.6	34
80	Solute traffic across mammalian peroxisomal membrane – single channel conductance monitoring reveals pore-forming activities in peroxisomes. Cellular and Molecular Life Sciences, 2005, 62, 2886-2895.	2.4	26
81	Mitochondrial fatty acid synthesis and maintenance of respiratory competent mitochondria in yeast. Biochemical Society Transactions, 2005, 33, 1162.	1.6	29
82	α-Methylacyl-CoA Racemase from Mycobacterium tuberculosis. Journal of Biological Chemistry, 2005, 280, 12611-12620.	1.6	43
83	Molecular Identification and Characterization of the Arabidopsis Δ3,5,Δ2,4-Dienoyl-Coenzyme A Isomerase, a Peroxisomal Enzyme Participating in the β-Oxidation Cycle of Unsaturated Fatty Acids. Plant Physiology, 2005, 138, 1947-1956.	2.3	42
84	Crystal Structure of 2-Enoyl-CoA Hydratase 2 from Human Peroxisomal Multifunctional Enzyme Type 2. Journal of Molecular Biology, 2005, 345, 1157-1169.	2.0	52
85	A Two-domain Structure of One Subunit Explains Unique Features of Eukaryotic Hydratase 2. Journal of Biological Chemistry, 2004, 279, 24666-24672.	1.6	56
86	A mouse model for α-methylacyl-CoA racemase deficiency: adjustment of bile acid synthesis and intolerance to dietary methyl-branched lipids. Human Molecular Genetics, 2004, 13, 955-965.	1.4	81
87	The Yeast Mitochondrial Proteome, a Study of Fermentative and Respiratory Growth. Journal of Biological Chemistry, 2004, 279, 3956-3979.	1.6	149
88	The rat liver peroxisomal membrane forms a permeability barrier for cofactors but not for small metabolites in vitro. Journal of Cell Science, 2004, 117, 5633-5642.	1.2	78
89	The behavior of peroxisomes in vitro: mammalian peroxisomes are osmotically sensitive particles. American Journal of Physiology - Cell Physiology, 2004, 287, C1623-C1635.	2.1	41
90	Htd2p/Yhr067p is a yeast 3-hydroxyacyl-ACP dehydratase essential for mitochondrial function and morphology. Molecular Microbiology, 2004, 53, 1407-1421.	1.2	75

#	Article	IF	CITATIONS
91	A novel mutation of the fumarase gene in a family with autosomal recessive fumarase deficiency. Journal of Molecular Medicine, 2004, 82, 550-4.	1.7	19
92	Site-directed mutagenesis to enable and improve crystallizability of Candida tropicalis (3R)-hydroxyacyl-CoA dehydrogenase. Biochemical and Biophysical Research Communications, 2004, 324, 25-30.	1.0	3
93	The 1.3à Crystal Structure of Human Mitochondrial Δ3-Δ2-Enoyl-CoA Isomerase Shows a Novel Mode of Binding for the Fatty Acyl Group. Journal of Molecular Biology, 2004, 342, 1197-1208.	2.0	42
94	Structural studies on Δ3-Δ2-enoyl-CoA isomerase: the variable mode of assembly of the trimeric disks of the crotonase superfamily. FEBS Letters, 2004, 557, 81-87.	1.3	24
95	Binary Structure of the Two-Domain (3R)-Hydroxyacyl-CoA Dehydrogenase from Rat Peroxisomal Multifunctional Enzyme Type 2 at 2.38 A Resolution. Structure, 2003, 11, 87-97.	1.6	27
96	The biochemistry of peroxisomal β-oxidation in the yeastSaccharomyces cerevisiae. FEMS Microbiology Reviews, 2003, 27, 35-64.	3.9	283
97	Crystallization and preliminary X-ray diffraction studies of an α-methylacyl-CoA racemase fromMycobacterium tuberculosis. Acta Crystallographica Section D: Biological Crystallography, 2003, 59, 353-355.	2.5	13
98	Crystallization and preliminary crystallographic data of 2-enoyl-CoA hydratase 2 domain ofCandida tropicalisperoxisomal multifunctional enzyme typeÂ2. Acta Crystallographica Section D: Biological Crystallography, 2003, 59, 1302-1305.	2.5	6
99	Structure–function Analysis of Enoyl Thioester Reductase Involved in Mitochondrial Maintenance. Journal of Molecular Biology, 2003, 327, 47-59.	2.0	40
100	Candida tropicalis Expresses Two Mitochondrial 2-Enoyl Thioester Reductases That Are Able to Form Both Homodimers and Heterodimers. Journal of Biological Chemistry, 2003, 278, 41213-41220.	1.6	28
101	Characterization of 2-Enoyl Thioester Reductase from Mammals. Journal of Biological Chemistry, 2003, 278, 20154-20161.	1.6	72
102	Organization of the multifunctional enzyme type 1: interaction between N- and C-terminal domains is required for the hydratase-1/isomerase activity. Biochemical Journal, 2002, 367, 433-441.	1.7	20
103	Crystallization and characterization of the dehydrogenase domain from rat peroxisomal multifunctional enzyme type 1. Acta Crystallographica Section D: Biological Crystallography, 2002, 58, 690-693.	2.5	6
104	Saccharomyces cerevisiae Adr1p Governs Fatty Acid \hat{I}^2 -Oxidation and Peroxisome Proliferation by RegulatingPOX1 and PEX11. Journal of Biological Chemistry, 2001, 276, 31825-31830.	1.6	54
105	Importance of sequences adjacent to the terminal tripeptide in the import of a peroxisomal Candida tropicalis protein in plant peroxisomes. Planta, 2000, 211, 150-157.	1.6	9
106	Alternatives to the Isomerase-dependent Pathway for the β-Oxidation of Oleic Acid Are Dispensable in Saccharomyces cerevisiae. Journal of Biological Chemistry, 1999, 274, 24514-24521.	1.6	36
107	Yeast Peroxisomal Multifunctional Enzyme: (3R)-Hydroxyacyl-CoA Dehydrogenase Domains A and B Are Required for Optimal Growth on Oleic Acid. Journal of Biological Chemistry, 1999, 274, 28619-28625.	1.6	31
108	Mutagenic and Enzymological Studies of the Hydratase and Isomerase Activities of 2-Enoyl-CoA Hydratase-1. Biochemistry, 1999, 38, 2991-2999.	1.2	49

#	Article	IF	CITATIONS
109	Function of human mitochondrial 2,4-dienoyl-CoA reductase and rat monofunctional Δ3-Δ2-enoyl-CoA isomerase in β-oxidation of unsaturated fatty acids. Biochemical Journal, 1999, 344, 903-914.	1.7	32
110	Function of human mitochondrial 2,4-dienoyl-CoA reductase and rat monofunctional Δ3-Δ2-enoyl-CoA isomerase in β-oxidation of unsaturated fatty acids. Biochemical Journal, 1999, 344, 903.	1.7	7
111	The crystal structure of dienoyl-CoA isomerase at 1.5 å resolution reveals the importance of aspartate and glutamate sidechains for catalysis. Structure, 1998, 6, 957-970.	1.6	84
112	Peroxisomal Δ3-cis-Δ2-trans-Enoyl-CoA Isomerase Encoded by ECI1 Is Required for Growth of the Yeast Saccharomyces cerevisiae on Unsaturated Fatty Acids. Journal of Biological Chemistry, 1998, 273, 31366-31374.	1.6	56
113	The Saccharomyces cerevisiae Peroxisomal 2,4-Dienoyl-CoA Reductase Is Encoded by the Oleate-inducible GeneSPS19. Journal of Biological Chemistry, 1997, 272, 22140-22147.	1.6	81
114	Peroxisomal multifunctional enzyme of β-oxidation metabolizing d-3-hydroxyacyl-CoA esters in rat liver: molecular cloning, expression and characterization. Biochemical Journal, 1997, 321, 21-28.	1.7	104
115	Molecular cloning of cDNA species for rat and mouse liver α-methylacyl-CoA racemases. Biochemical Journal, 1997, 326, 883-889.	1.7	26
116	Recombinant 2-enoyl-CoA hydratase derived from rat peroxisomal multifunctional enzyme 2: role of the hydratase reaction in bile acid synthesis. Biochemical Journal, 1997, 328, 377-382.	1.7	43
117	Regulation of the yeast SPS19 gene encoding peroxisomal 2,4â€dienoylâ€CoA reductase by the transcription factors Pip2p and Oaf1p: βâ€oxidation is dispensable for Saccharomyces cerevisiae sporulation in acetate medium. Molecular Microbiology, 1997, 26, 675-685.	1.2	25
118	Characterization and Isolation of Enzymes that Hydrolyze Short-Chain acyl-CoA in Rat-Liver Mitochondria. FEBS Journal, 1996, 239, 526-531.	0.2	13
119	Peroxisomal ?-Oxidation and Polyunsaturated Fatty Acids. Annals of the New York Academy of Sciences, 1996, 804, 116-128.	1.8	42
120	Changing Stereochemistry for a Metabolic Pathway in Vivo. Journal of Biological Chemistry, 1995, 270, 27453-27457.	1.6	54
121	The existence of two mitochondrial isoforms of 2,4-dienoyl-CoA reductase in the rat. FEBS Journal, 1993, 215, 199-204.	0.2	25
122	Peroxisomal Diseases. Annals of Medicine, 1992, 24, 163-166.	1.5	4
123	Enzymatic assay for 3-hydroxyacyl-CoA and 2-trans-enoyl-CoA intermediates of β-oxidation. Analytical Biochemistry, 1988, 171, 67-72.	1.1	8
124	Effect of acetate and octanoate on tricarboxylic acid cycle metabolite disposal during propionate oxidation in the perfused rat heart. Biochimica Et Biophysica Acta - General Subjects, 1984, 801, 429-436.	1.1	17
125	Adaptive changes in gluconeogenic enzymes in rat liver and kidney during long-term ethanol ingestion. Metabolism: Clinical and Experimental, 1978, 27, 1557-1565.	1.5	9
126	Effects of pent-4-enoate on cellular redox state, glycolysis and fatty acid oxidation in isolated perfused rat heart. Biochemical Journal, 1978, 170, 235-240.	3.2	13

#	Article	IF	CITATIONS
127	Effect of prolonged ethanol ingestion on hepatic lipogenesis and related enzyme activities. Biochemical Journal, 1977, 164, 169-177.	1.7	34