Francisco Torres-Quiroz

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3867417/publications.pdf

Version: 2024-02-01

759233 940533 16 384 12 16 citations h-index g-index papers 17 17 17 673 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	The yeast two-component SLN1 branch of the HOG pathway and the scaffolding activity of Pbs2 modulate the response to endoplasmic reticulum stress induced by tunicamycin. International Microbiology, 2022, 25, 639-647.	2.4	1
2	TRPV4: A Physio and Pathophysiologically Significant Ion Channel. International Journal of Molecular Sciences, 2020, 21, 3837.	4.1	68
3	TRP ion channels: Proteins with conformational flexibility. Channels, 2019, 13, 207-226.	2.8	16
4	YAAM: Yeast Amino Acid Modifications Database. Database: the Journal of Biological Databases and Curation, 2018, 2018, .	3.0	13
5	The Unfolded Protein Response Pathway in the Yeast Kluyveromyces lactis. A Comparative View among Yeast Species. Cells, 2018, 7, 106.	4.1	27
6	αβ′â€NAC cooperates with Sam37 to mediate early stages of mitochondrial protein import. FEBS Journal, 2017, 284, 814-830.	4.7	24
7	Feedback regulation between autophagy and PKA. Autophagy, 2015, 11, 1181-1183.	9.1	30
8	Systematic identification of signal integration by protein kinase A. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, 4501-4506.	7.1	53
9	Ineffective Phosphorylation of Mitogen-Activated Protein Kinase Hog1p in Response to High Osmotic Stress in the Yeast Kluyveromyces lactis. Eukaryotic Cell, 2015, 14, 922-930.	3.4	9
10	Integrative avenues for exploring the dynamics and evolution of protein interaction networks. Current Opinion in Biotechnology, 2013, 24, 775-783.	6.6	14
11	qPCA: a scalable assay to measure the perturbation of protein–protein interactions in living cells. Molecular BioSystems, 2013, 9, 36-43.	2.9	37
12	The Activity of Yeast Hog1 MAPK Is Required during Endoplasmic Reticulum Stress Induced by Tunicamycin Exposure. Journal of Biological Chemistry, 2010, 285, 20088-20096.	3.4	51
13	Protein Kinases Involved in Mating and Osmotic Stress in the Yeast <i>Kluyveromyces lactis</i> Eukaryotic Cell, 2008, 7, 78-85.	3.4	14
14	TheKISTE2 andKISTE3 genes encodeMATα- andMATa-specific G-protein-coupled receptors, respectively, which are required for mating ofKluyveromyces lactis haploid cells. Yeast, 2007, 24, 17-25.	1.7	4
15	Kluyveromyces lactissexual pheromones. Gene structures and cellular responses to α-factor. FEMS Yeast Research, 2007, 7, 740-747.	2.3	8
16	The pheromone response pathway of Kluyveromyces lactis. FEMS Yeast Research, 2006, 6, 336-344.	2.3	15