Rodolfo Lba Medeiros

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3866582/publications.pdf

Version: 2024-02-01

#	Article	IF	CITATIONS
1	NiO–MgAl2O4 systems for dry reforming of methane: Effect of the combustion synthesis route in the catalysts properties. Materials Chemistry and Physics, 2022, 278, 125599.	4.0	2
2	Green synthesis with Aloe Vera of MgAl2O4 substituted by Mn and without calcination treatment. Research, Society and Development, 2022, 11, e14411628873.	0.1	3
3	One-pot microwave-assisted combustion synthesis of Ni-Al2O3 nanocatalysts for hydrogen production via dry reforming of methane. Fuel, 2021, 287, 119511.	6.4	31
4	Development of CuO-based oxygen carriers supported on diatomite and kaolin for chemical looping combustion. Research, Society and Development, 2021, 10, e15110412831.	0.1	2
5	Synthesis of alumina by microwave-assisted combustion method using low fuel content and its use as catalytic support for dry reforming of methane. Materials Chemistry and Physics, 2021, 264, 124408.	4.0	10
6	Synthesis and characterization of the ionic liquid 1-methyl-3-(2,6-(S)-dimethyloct-2-ene)-imidazol tetrafluoroborate. Research, Society and Development, 2021, 10, e393101018988.	0.1	0
7	A influência de Ni e Co suportados em diatomita brasileira para produção de H2 via reforma a seco do metano. Research, Society and Development, 2021, 10, e388101119729.	0.1	0
8	Evaluating the reactivity of CuO-TiO2 oxygen carrier for energy production technology with CO2 capture. Research, Society and Development, 2021, 10, e514101220596.	0.1	0
9	Recent advances (2016 - 2020) in green synthesis of metal oxide nanoparticles: An overview. Research, Society and Development, 2021, 10, e399101623406.	0.1	Ο
10	Double perovskite (La2-xCa-Bax)NiO4 oxygen carriers for chemical looping reforming applications. International Journal of Hydrogen Energy, 2020, 45, 1681-1696.	7.1	21
11	Nickel-containing hybrid ceramics derived from polysiloxanes with hierarchical porosity for CO2 methanation. Microporous and Mesoporous Materials, 2019, 278, 156-166.	4.4	19
12	Study of the reactivity of Double-perovskite type oxide La1â^'xMxNiO4 (MÂ=ÂCa or Sr) for chemical looping hydrogen production. International Journal of Hydrogen Energy, 2018, 43, 1406-1414.	7.1	25
13	One-step synthesis of LaNiO3 with chitosan for dry reforming of methane. International Journal of Hydrogen Energy, 2018, 43, 9696-9704.	7.1	35
14	A comparative study of dry reforming of methane over nickel catalysts supported on perovskite-type LaAlO3 and commercial α-Al2O3. International Journal of Hydrogen Energy, 2018, 43, 11022-11037.	7.1	51
15	Study of the reactivity by pulse of CH4 over NiO/Fe-doped MgAl2O4 oxygen carriers for hydrogen production. International Journal of Hydrogen Energy, 2017, 42, 24823-24829.	7.1	11
16	Ni supported on Fe-doped MgAl2O4 for dry reforming of methane: Use of factorial design to optimize H2 yield. International Journal of Hydrogen Energy, 2016, 41, 14047-14057.	7.1	47