M Carmen Louzao

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3866557/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Human Poisoning from Marine Toxins: Unknowns for Optimal Consumer Protection. Toxins, 2018, 10, 324.	1.5	104
2	Azaspiracid-1, a potent, nonapoptotic new phycotoxin with several cell targets. Cellular Signalling, 2002, 14, 703-716.	1.7	72
3	Cell Type-specific Modes of Feedback Regulation of Capacitative Calcium Entry. Journal of Biological Chemistry, 1996, 271, 14807-14813.	1.6	58
4	Cell Growth Inhibition and Actin Cytoskeleton Disorganization Induced by Azaspiracid-1 Structureâ^'Activity Studies. Chemical Research in Toxicology, 2006, 19, 1459-1466.	1.7	57
5	"Fluorescent glycogen―formation with sensibility for in vivo and in vitro detection. Glycoconjugate Journal, 2008, 25, 503-510.	1.4	51
6	Specific and dynamic detection of palytoxins by in vitro microplate assay with human neuroblastoma cells. Bioscience Reports, 2009, 29, 13-23.	1.1	49
7	A Fluorimetric Microplate Assay for Detection and Quantitation of Toxins Causing Paralytic Shellfish Poisoning. Chemical Research in Toxicology, 2003, 16, 433-438.	1.7	48
8	Biological methods for marine toxin detection. Analytical and Bioanalytical Chemistry, 2010, 397, 1673-1681.	1.9	47
9	Multidetection of Paralytic, Diarrheic, and Amnesic Shellfish Toxins by an Inhibition Immunoassay Using a Microsphere-Flow Cytometry System. Analytical Chemistry, 2013, 85, 7794-7802.	3.2	47
10	The Sodium Channel of Human Excitable Cells is a Target for Gambierol. Cellular Physiology and Biochemistry, 2006, 17, 257-268.	1.1	45
11	Acute Oral Toxicity of Tetrodotoxin in Mice: Determination of Lethal Dose 50 (LD50) and No Observed Adverse Effect Level (NOAEL). Toxins, 2017, 9, 75.	1.5	43
12	The methyl ester of okadaic acid is more potent than okadaic acid in disrupting the actin cytoskeleton and metabolism of primary cultured hepatocytes. British Journal of Pharmacology, 2010, 159, 337-344.	2.7	42
13	Human Muscarinic Acetylcholine Receptors Are a Target of the Marine Toxin 13-Desmethyl C Spirolide. Chemical Research in Toxicology, 2010, 23, 1753-1761.	1.7	42
14	Lactone Ring of Pectenotoxins: a Key Factor for their Activity on Cytoskeletal Dynamics. Cellular Physiology and Biochemistry, 2007, 19, 283-292.	1.1	41
15	Marine toxins and the cytoskeleton: a new view of palytoxin toxicity. FEBS Journal, 2008, 275, 6067-6074.	2.2	40
16	Use of Biosensors as Alternatives to Current Regulatory Methods for Marine Biotoxins. Sensors, 2009, 9, 9414-9443.	2.1	39
17	Feasibility of gymnodimine and 13-desmethyl C spirolide detection by fluorescence polarization using a receptor-based assay in shellfish matrixes. Analytica Chimica Acta, 2010, 657, 75-82.	2.6	39
18	Innovative detection methods for aquatic algal toxins and their presence in the food chain. Analytical and Bioanalytical Chemistry, 2013, 405, 7719-7732.	1.9	39

M CARMEN LOUZAO

#	Article	IF	CITATIONS
19	Palytoxins and cytoskeleton: An overview. Toxicon, 2011, 57, 460-469.	0.8	36
20	Development of a Solid-Phase Receptor-Based Assay for the Detection of Cyclic Imines Using a Microsphere-Flow Cytometry System. Analytical Chemistry, 2013, 85, 2340-2347.	3.2	36
21	Detection of Paralytic Shellfish Toxins by a Solid-Phase Inhibition Immunoassay Using a Microsphere-Flow Cytometry System. Analytical Chemistry, 2012, 84, 4350-4356.	3.2	35
22	Diarrhetic effect of okadaic acid could be related with its neuronal action: Changes in neuropeptide Y. Toxicology Letters, 2015, 237, 151-160.	0.4	35
23	Experimental Basis for the High Oral Toxicity of Dinophysistoxin 1: A Comparative Study of DSP. Toxins, 2014, 6, 211-228.	1.5	32
24	Detection of 13,19-didesmethyl C spirolide by fluorescence polarization using Torpedo electrocyte membranes. Analytical Biochemistry, 2010, 403, 102-107.	1.1	30
25	Toxic Action Reevaluation of Okadaic Acid, Dinophysistoxin-1 and Dinophysistoxin-2: Toxicity Equivalency Factors Based on the Oral Toxicity Study. Cellular Physiology and Biochemistry, 2018, 49, 743-757.	1.1	30
26	Acute Cardiotoxicity Evaluation of the Marine Biotoxins OA, DTX-1 and YTX. Toxins, 2015, 7, 1030-1047.	1.5	29
27	The cytoskeleton, a structure that is susceptible to the toxic mechanism activated by palytoxins in human excitable cells. FEBS Journal, 2007, 274, 1991-2004.	2.2	26
28	Hapalindoles from the Cyanobacterium <i>Fischerella</i> : Potential Sodium Channel Modulators. Chemical Research in Toxicology, 2014, 27, 1696-1706.	1.7	26
29	Cytotoxic effect of palytoxin on mussel. Toxicon, 2010, 56, 842-847.	0.8	25
30	In vivo arrhythmogenicity of the marine biotoxin azaspiracid-2 in rats. Archives of Toxicology, 2014, 88, 425-434.	1.9	25
31	Multi-detection method for five common microalgal toxins based on the use of microspheres coupled to a flow-cytometry system. Analytica Chimica Acta, 2014, 850, 57-64.	2.6	25
32	Production of Functionally Active Palytoxin-like Compounds by Mediterranean <i>Ostreopsis cf. siamensis</i> . Cellular Physiology and Biochemistry, 2009, 23, 431-440.	1.1	22
33	13-Desmethyl spirolide-c and 13,19-didesmethyl spirolide-c trans-epithelial permeabilities: Human intestinal permeability modelling. Toxicology, 2011, 287, 69-75.	2.0	22
34	Subacute Cardiovascular Toxicity of the Marine Phycotoxin Azaspiracid-1 in Rats. Toxicological Sciences, 2016, 151, 104-114.	1.4	22
35	The kinetic, mechanistic and cytomorphological effects of palytoxin in human intestinal cells (<scp>C</scp> acoâ€2) explain its lowerâ€thanâ€parenteral oral toxicity. FEBS Journal, 2013, 280, 3906-3919.	2.2	21
36	Effects of a Synthetic Analog of Polycavernoside A on Human Neuroblastoma Cells. Cellular Physiology and Biochemistry, 2007, 19, 185-194.	1.1	20

M CARMEN LOUZAO

#	Article	IF	CITATIONS
37	How Safe Is Safe for Marine Toxins Monitoring?. Toxins, 2016, 8, 208.	1.5	20
38	Induction of actin cytoskeleton rearrangement by methyl okadaate – comparison with okadaic acid. FEBS Journal, 2008, 275, 926-934.	2.2	19
39	The marine polyether gambierol enhances muscle contraction and blocks a transient K+ current in skeletal muscle cells. Toxicon, 2010, 56, 785-791.	0.8	19
40	Characterization of the dinophysistoxin-2 acute oral toxicity in mice to define the Toxicity Equivalency Factor. Food and Chemical Toxicology, 2017, 102, 166-175.	1.8	19
41	Current Trends and New Challenges in Marine Phycotoxins. Marine Drugs, 2022, 20, 198.	2.2	19
42	Impact of the Pectenotoxin C-43 Oxidation Degree on Its Cytotoxic Effect on Rat Hepatocytes. Chemical Research in Toxicology, 2010, 23, 504-515.	1.7	18
43	Microsphere-based immunoassay for the detection of azaspiracids. Analytical Biochemistry, 2014, 447, 58-63.	1.1	17
44	Cytotoxicity of goniodomin A and B in non contractile cells. Toxicology Letters, 2016, 250-251, 10-20.	0.4	17
45	InÂvitro chronic effects on hERG channel caused by the marine biotoxin azaspiracid-2. Toxicon, 2014, 91, 69-75.	0.8	16
46	Evaluation of the intestinal permeability and cytotoxic effects of cylindrospermopsin. Toxicon, 2014, 91, 23-34.	0.8	16
47	New protocol to obtain spirolides from <i>Alexandrium ostenfeldii</i> cultures with high recovery and purity. Biomedical Chromatography, 2010, 24, 878-886.	0.8	15
48	Detection of Cyclic Imine Toxins in Dietary Supplements of Green Lipped Mussels (Perna canaliculus) and in Shellfish Mytilus chilensis. Toxins, 2020, 12, 613.	1.5	15
49	Absorption and Effect of Azaspiracid-1 Over the Human Intestinal Barrier. Cellular Physiology and Biochemistry, 2017, 43, 136-146.	1.1	14
50	Ostreocin-D Impact on Globular Actin of Intact Cells. Chemical Research in Toxicology, 2009, 22, 374-381.	1.7	13
51	Subacute Cardiotoxicity of Yessotoxin: <i>In Vitro</i> and <i>in Vivo</i> Studies. Chemical Research in Toxicology, 2016, 29, 981-990.	1.7	13
52	Detection of palytoxin-like compounds by a flow cytometry-based immunoassay supported by functional and analytical methods. Analytica Chimica Acta, 2016, 903, 1-12.	2.6	13
53	Study of Adsorption and Flocculation Properties of Natural Clays to Remove Prorocentrum lima. Toxins, 2015, 7, 3977-3988.	1.5	12
54	Determination of the toxicity equivalency factors for ciguatoxins using human sodium channels. Food and Chemical Toxicology, 2022, 160, 112812.	1.8	12

M CARMEN LOUZAO

#	Article	IF	CITATIONS
55	Acute Toxicity Assessment: Macroscopic and Ultrastructural Effects in Mice Treated with Oral Tetrodotoxin. Toxins, 2019, 11, 305.	1.5	11
56	Comparative Cytotoxicity of Gambierol versus Other Marine Neurotoxins. Chemical Research in Toxicology, 2011, 24, 835-842.	1.7	10
57	First Identification of Palytoxin-Like Molecules in the Atlantic Coral Species <i>Palythoa canariensis</i> . Analytical Chemistry, 2017, 89, 7438-7446.	3.2	10
58	Targeting Chloride Ion Channels: New Insights into the Mechanism of Action of the Marine Toxin Azaspiracid. Chemical Research in Toxicology, 2021, 34, 865-879.	1.7	10
59	Serotonin involvement in okadaic acid-induced diarrhoea in vivo. Archives of Toxicology, 2021, 95, 2797-2813.	1.9	9
60	Subacute immunotoxicity of the marine phycotoxin yessotoxin in rats. Toxicon, 2017, 129, 74-80.	0.8	8
61	In vivo cardiomyocyte response to YTX- and AZA-1-induced damage: autophagy versus apoptosis. Archives of Toxicology, 2017, 91, 1859-1870.	1.9	8
62	In Vivo Evaluation of the Chronic Oral Toxicity of the Marine Toxin Palytoxin. Toxins, 2020, 12, 489.	1.5	8
63	Partial Blockade of Human Voltage-Dependent Sodium Channels by the Marine Toxins Azaspiracids. Chemical Research in Toxicology, 2020, 33, 2593-2604.	1.7	7
64	DSP Toxin Distribution across Organs in Mice after Acute Oral Administration. Marine Drugs, 2021, 19, 23.	2.2	7
65	Toxicity equivalence factors for regulated and non-regulated marine toxins. Current Opinion in Food Science, 2017, 18, 64-70.	4.1	5
66	Gambierol Potently Increases Evoked Quantal Transmitter Release and Reverses Pre- and Post-Synaptic Blockade at Vertebrate Neuromuscular Junctions. Neuroscience, 2020, 439, 106-116.	1.1	4
67	Climate Change and Marine and Freshwater Toxins. , 2020, , .		4
68	Disruption of the Actin Cytoskeleton Induces Fluorescent Glucose Accumulation on the Rat Hepatocytes Clone 9. Cellular Physiology and Biochemistry, 2011, 27, 653-660.	1.1	3
69	13. From science to policy: dynamic adaptation of legal regulations on aquatic biotoxins. , 2015, , 441-482.		3
70	Gambierol. , 0, , 1-18.		2
71	Yessotoxins and Pectenotoxins. , 2014, , 657-676.		2
72	Use of Biosensors as Alternatives to Current Regulatory Methods for Marine Biotoxins. Springer Protocols, 2012, , 219-242.	0.1	1

#	Article	IF	CITATIONS
73	In vivo subchronic effects of ciguatoxin-related compounds, reevaluation of their toxicity. Archives of Toxicology, 0, , .	1.9	1
74	12. Effects on world food production and security. , 2015, , 417-440.		0
75	4. Toxicological studies with animals. , 2018, , 91-114.		0
76	Polycavernosides and Other Scarce New Toxins. , 2014, , 857-872.		0
77	14 Effects on world food production and security. , 2020, , 579-606.		0