
Sophocles Chrissobolis

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3866358/publications.pdf

Version: 2024-02-01

#	Article	IF	CITATIONS
1	Roles of Inflammation, Oxidative Stress, and Vascular Dysfunction in Hypertension. BioMed Research International, 2014, 2014, 1-11.	1.9	419
2	The role of oxidative stress and NADPH oxidase in cerebrovascular disease. Trends in Molecular Medicine, 2008, 14, 495-502.	6.7	189
3	Oxidative stress and endothelial dysfunction in cerebrovascular disease. Frontiers in Bioscience - Landmark, 2011, 16, 1733.	3.0	160
4	Increased NADPH-Oxidase Activity and Nox4 Expression During Chronic Hypertension Is Associated With Enhanced Cerebral Vasodilatation to NADPH In Vivo. Stroke, 2004, 35, 584-589.	2.0	143
5	Evidence That Rho-Kinase Activity Contributes to Cerebral Vascular Tone In Vivo and Is Enhanced During Chronic Hypertension. Circulation Research, 2001, 88, 774-779.	4.5	112
6	Endothelial Cell Mineralocorticoid Receptors Regulate Deoxycorticosterone/Salt-Mediated Cardiac Remodeling and Vascular Reactivity But Not Blood Pressure. Hypertension, 2014, 63, 1033-1040.	2.7	111
7	Glutathione Peroxidase-1 Plays a Major Role in Protecting Against Angiotensin II–Induced Vascular Dysfunction. Hypertension, 2008, 51, 872-877.	2.7	79
8	Role of Nox isoforms in angiotensin II-induced oxidative stress and endothelial dysfunction in brain. Journal of Applied Physiology, 2012, 113, 184-191.	2.5	74
9	Evidence That Estrogen Suppresses Rho-Kinase Function in the Cerebral Circulation In Vivo. Stroke, 2004, 35, 2200-2205.	2.0	71
10	Vasorelaxant and antioxidant activity of the isoflavone metabolite equol in carotid and cerebral arteries. Brain Research, 2007, 1141, 99-107.	2.2	65
11	Role of inwardly rectifying K+ channels in K+-induced cerebral vasodilatation in vivo. American Journal of Physiology - Heart and Circulatory Physiology, 2000, 279, H2704-H2712.	3.2	59
12	Recent Evidence for an Involvement of Rho-Kinase in Cerebral Vascular Disease. Stroke, 2006, 37, 2174-2180.	2.0	58
13	Aldosterone-induced oxidative stress and inflammation in the brain are mediated by the endothelial cell mineralocorticoid receptor. Brain Research, 2016, 1637, 146-153.	2.2	58
14	Arachidonate dilates basilar artery by lipoxygenase-dependent mechanism and activation of K ⁺ channels. American Journal of Physiology - Regulatory Integrative and Comparative Physiology, 2001, 281, R246-R253.	1.8	51
15	Pressor response to angiotensin II is enhanced in aged mice and associated with inflammation, vasoconstriction and oxidative stress. Aging, 2017, 9, 1595-1606.	3.1	49
16	Cardiac Tissue Injury and Remodeling Is Dependent Upon MR Regulation of Activation Pathways in Cardiac Tissue Macrophages. Endocrinology, 2016, 157, 3213-3223.	2.8	47
17	Sex Differences in Protection Against Angiotensin II–Induced Endothelial Dysfunction by Manganese Superoxide Dismutase in the Cerebral Circulation. Hypertension, 2010, 55, 905-910.	2.7	39
18	Inwardly Rectifying Potassium Channels in the Regulation of Vascular Tone. Current Drug Targets, 2003, 4, 281-289.	2.1	38

#	Article	IF	CITATIONS
19	Advanced atherosclerosis is associated with inflammation, vascular dysfunction and oxidative stress, but not hypertension. Pharmacological Research, 2017, 116, 70-76.	7.1	37
20	Chronic aldosterone administration causes Nox2-mediated increases in reactive oxygen species production and endothelial dysfunction in the cerebral circulation. Journal of Hypertension, 2014, 32, 1815-1821.	0.5	34
21	Inhibitory Effects of Protein Kinase C on Inwardly Rectifying K + - and ATP-Sensitive K + Channel-Mediated Responses of the Basilar Artery. Stroke, 2002, 33, 1692-1697.	2.0	24
22	Receptor Activity-Modifying Protein-1 Augments Cerebrovascular Responses to Calcitonin Gene-Related Peptide and Inhibits Angiotensin II-Induced Vascular Dysfunction. Stroke, 2010, 41, 2329-2334.	2.0	24
23	Nitroxyl (HNO) suppresses vascular Nox2 oxidase activity. Free Radical Biology and Medicine, 2013, 60, 264-271.	2.9	24
24	Neuronal NO Mediates Cerebral Vasodilator Responses to K + in Hypertensive Rats. Hypertension, 2002, 39, 880-885.	2.7	19
25	Influence of Gender on K + -Induced Cerebral Vasodilatation. Stroke, 2004, 35, 747-752.	2.0	19
26	Vascular Consequences of Aldosterone Excess and Mineralocorticoid Receptor Antagonism. Current Hypertension Reviews, 2017, 13, 46-56.	0.9	17
27	Targeting the renin angiotensin system for the treatment of anxiety and depression. Pharmacology Biochemistry and Behavior, 2020, 199, 173063.	2.9	16
28	Aldosterone-induced hypertension is sex-dependent, mediated by T cells and sensitive to GPER activation. Cardiovascular Research, 2021, 117, 960-970.	3.8	16
29	Aldosterone and the mineralocorticoid receptor in the cerebral circulation and stroke. Experimental & Translational Stroke Medicine, 2012, 4, 21.	3.2	13
30	Regulator of G-protein signaling 5 protein protects against anxiety- and depression-like behavior. Behavioural Pharmacology, 2019, 30, 711-720.	1.7	8
31	Cell-specific mineralocorticoid receptors: future therapeutic targets for stroke?. Neural Regeneration Research, 2016, 11, 1230.	3.0	3
32	Role of Oxidative Stress in Hypertension. Oxidative Stress in Applied Basic Research and Clinical Practice, 2017, , 59-78.	0.4	1
33	Prenatal exposure to methamphetamine in rats induces endothelial dysfunction in male but not female adult offspring. Naunyn-Schmiedeberg's Archives of Pharmacology, 2021, 394, 981-988.	3.0	1
34	Suramin inhibits NADPH oxidase activity in cerebral arteries after subarachnoid hemorrhage. FASEB Journal, 2006, 20, A725.	0.5	1
35	Protective role of manganese superoxide dismutase against angiotensin IIâ€induced, nox2â€dependent cerebral endothelial dysfunction. FASEB Journal, 2007, 21, A1262.	0.5	1
36	Angiotensin II (Ang II)â€Induced Oxidative Stress and Endothelial Dysfunction in the Cerebral Circulation. FASEB Journal, 2006, 20, LB15.	0.5	0

#	Article	IF	CITATIONS
37	Role of Regulator of Gâ€Protein Signaling 5 Protein in Modulating Emotional Behaviors in the Absence and Presence of Angiotensin IIâ€Induced Hypertension. FASEB Journal, 2018, 32, .	0.5	0
38	Regulator of Gâ€Protein Signaling 5 Protein Modulates Blood Pressure and Cerebral Vascular Superoxide Levels in Aged Mice. FASEB Journal, 2019, 33, lb404.	0.5	0
39	Evidence that Regulator of Gâ€Protein Signaling 5 Protein Modulates Emotional Behaviors in Adult Mice. FASEB Journal, 2019, 33, lb89.	0.5	Ο
40	Deletion of RGS2 Results in Increased Blood Pressure and Depression‣ike Behavior in the Presence of Elevated Ang II Levels in Female Mice. FASEB Journal, 2022, 36, .	0.5	0