Sauro Succi

List of Publications by Citations

Source: https://exaly.com/author-pdf/3865738/sauro-succi-publications-by-citations.pdf

Version: 2024-04-11

This document has been generated based on the publications and citations recorded by exaly.com. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

16,249 498 111 57 h-index g-index citations papers 6.96 17,658 3.5 523 L-index avg, IF ext. citations ext. papers

#	Paper	IF	Citations
498	The lattice Boltzmann equation: theory and applications. <i>Physics Reports</i> , 1992 , 222, 145-197	27.7	1603
497	Extended self-similarity in turbulent flows. <i>Physical Review E</i> , 1993 , 48, R29-R32	2.4	736
496	Lattice Gas Dynamics with Enhanced Collisions. <i>Europhysics Letters</i> , 1989 , 9, 345-349	1.6	712
495	MHD-Limits to Plasma Confinement. <i>Plasma Physics and Controlled Fusion</i> , 1984 , 26, 209-215	2	506
494	Extended Boltzmann kinetic equation for turbulent flows. <i>Science</i> , 2003 , 301, 633-6	33.3	504
493	Three-Dimensional Flows in Complex Geometries with the Lattice Boltzmann Method. <i>Europhysics Letters</i> , 1989 , 10, 433-438	1.6	314
492	Generalized lattice Boltzmann method with multirange pseudopotential. <i>Physical Review E</i> , 2007 , 75, 026702	2.4	298
491	Mesoscopic modeling of slip motion at fluid-solid interfaces with heterogeneous catalysis. <i>Physical Review Letters</i> , 2002 , 89, 064502	7.4	261
490	Ground state of trapped interacting bose-einstein condensates by an explicit imaginary-time algorithm. <i>Physical Review E</i> , 2000 , 62, 7438-44	2.4	240
489	Expanded analogy between Boltzmann kinetic theory of fluids and turbulence. <i>Journal of Fluid Mechanics</i> , 2004 , 519, 301-314	3.7	214
488	Mesoscopic modeling of a two-phase flow in the presence of boundaries: The contact angle. <i>Physical Review E</i> , 2006 , 74, 021509	2.4	192
487	Surface roughness-hydrophobicity coupling in microchannel and nanochannel flows. <i>Physical Review Letters</i> , 2006 , 97, 204503	7.4	161
486	The lattice Boltzmann equation on irregular lattices. <i>Journal of Statistical Physics</i> , 1992 , 68, 401-407	1.5	159
485	Colloquium: Role of the H theorem in lattice Boltzmann hydrodynamic simulations. <i>Reviews of Modern Physics</i> , 2002 , 74, 1203-1220	40.5	156
484	Lattice Boltzmann equation for quantum mechanics. <i>Physica D: Nonlinear Phenomena</i> , 1993 , 69, 327-33.	23.3	153
483	The permeability of a random medium: Comparison of simulation with theory. <i>Physics of Fluids A, Fluid Dynamics</i> , 1990 , 2, 2085-2088		153
482	RECENT ADVANCES IN LATTICE BOLTZMANN COMPUTING 1995 , 195-242		151

481	The Lattice Boltzmann Equation 2018 ,		150	
480	Lattice Boltzmann 2038. Europhysics Letters, 2015 , 109, 50001	1.6	143	
479	Analytical calculation of slip flow in lattice Boltzmann models with kinetic boundary conditions. <i>Physics of Fluids</i> , 2005 , 17, 093602	4.4	141	
478	Maximum Entropy Principle for Lattice Kinetic Equations. <i>Physical Review Letters</i> , 1998 , 81, 6-9	7.4	129	
477	Lattice Boltzmann model for anisotropic liquid-solid phase transition. <i>Physical Review Letters</i> , 2001 , 86, 3578-81	7.4	127	
476	The lattice Boltzmann equation: A new tool for computational fluid-dynamics. <i>Physica D: Nonlinear Phenomena</i> , 1991 , 47, 219-230	3.3	127	
475	Numerical methods for atomic quantum gases with applications to Bose E instein condensates and to ultracold fermions. <i>Physics Reports</i> , 2004 , 395, 223-355	27.7	116	
474	Lattice Boltzmann method at finite Knudsen numbers. <i>Europhysics Letters</i> , 2005 , 69, 549-555	1.6	114	
473	Numerical solution of the gross-pitaevskii equation using an explicit finite-difference scheme: An application to trapped bose-einstein condensates. <i>Physical Review E</i> , 2000 , 62, 1382-9	2.4	102	
472	MUPHY: A parallel MUlti PHYsics/scale code for high performance bio-fluidic simulations. <i>Computer Physics Communications</i> , 2009 , 180, 1495-1502	4.2	101	
471	Fast lattice Boltzmann solver for relativistic hydrodynamics. <i>Physical Review Letters</i> , 2010 , 105, 014502	7.4	99	
47°	Simulating the Flow Around a Circular Cylinder with a Lattice Boltzmann Equation. <i>Europhysics Letters</i> , 1989 , 8, 517-521	1.6	97	
469	A flexible high-performance Lattice Boltzmann GPU code for the simulations of fluid flows in complex geometries. <i>Concurrency Computation Practice and Experience</i> , 2010 , 22, 1-14	1.4	89	
468	Lattice Boltzmann method on unstructured grids: further developments. <i>Physical Review E</i> , 2003 , 68, 016701	2.4	87	
467	A multi-relaxation lattice kinetic method for passive scalar diffusion. <i>Journal of Computational Physics</i> , 2005 , 206, 453-462	4.1	87	
466	Discrete Boltzmann modeling of multiphase flows: hydrodynamic and thermodynamic non-equilibrium effects. <i>Soft Matter</i> , 2015 , 11, 5336-45	3.6	83	
465	Simulating two-dimensional thermal channel flows by means of a lattice Boltzmann method with new boundary conditions. <i>Future Generation Computer Systems</i> , 2004 , 20, 935-944	7·5	83	
464	Hydrodynamic correlations in the translocation of a biopolymer through a nanopore: theory and multiscale simulations. <i>Physical Review E</i> , 2008 , 78, 036704	2.4	82	

463	Lattice Boltzmann method with self-consistent thermo-hydrodynamic equilibria. <i>Journal of Fluid Mechanics</i> , 2009 , 628, 299-309	3.7	80
462	Multiscale Coupling of Molecular Dynamics and Hydrodynamics: Application to DNA Translocation through a Nanopore. <i>Multiscale Modeling and Simulation</i> , 2006 , 5, 1156-1173	1.8	80
461	Lattice Boltzmann across scales: from turbulence to DNA translocation. <i>European Physical Journal B</i> , 2008 , 64, 471-479	1.2	78
460	Exponential Tails in Two-Dimensional Rayleigh-Bflard Convection. <i>Europhysics Letters</i> , 1993 , 21, 305-3	101.6	78
459	Mesoscopic lattice Boltzmann modeling of soft-glassy systems: Theory and simulations. <i>Journal of Chemical Physics</i> , 2009 , 131, 104903	3.9	77
458	Numerical solution of the Schrdinger equation using discrete kinetic theory. <i>Physical Review E</i> , 1996 , 53, 1969-1975	2.4	77
457	Lattice Boltzmann simulations of phase-separating flows at large density ratios: the case of doubly-attractive pseudo-potentials. <i>Soft Matter</i> , 2010 , 6, 4357	3.6	76
456	Massively Parallel Lattice-Boltzmann Simulation of Turbulent Channel Flow. <i>International Journal of Modern Physics C</i> , 1997 , 08, 869-877	1.1	75
455	Challenges in lattice Boltzmann computing. <i>Journal of Statistical Physics</i> , 1995 , 81, 5-16	1.5	75
454	A Lattice Boltzmann Model for Anisotropic Crystal Growth from Melt. <i>Journal of Statistical Physics</i> , 2002 , 107, 173-186	1.5	74
453	Intermittency and Structure Functions in Channel Flow Turbulence. <i>Physical Review Letters</i> , 1999 , 82, 5044-5047	7.4	74
452	Recent advances of Lattice Boltzmann techniques on unstructured grids. <i>Progress in Computational Fluid Dynamics</i> , 2005 , 5, 85	0.7	72
451	Lattice boltzmann versus molecular dynamics simulation of nanoscale hydrodynamic flows. <i>Physical Review Letters</i> , 2006 , 96, 224503	7.4	71
450	Galilean-invariant lattice-Boltzmann models with H theorem. <i>Physical Review E</i> , 2003 , 68, 025103	2.4	71
449	Multiscale Lattice Boltzmann Schemes with Turbulence Modeling. <i>Journal of Computational Physics</i> , 2001 , 170, 812-829	4.1	68
448	Diffusion and hydrodynamic dispersion with the lattice Boltzmann method. <i>Physical Review A</i> , 1992 , 45, 5771-5774	2.6	65
447	Regularized lattice Bhatnagar-Gross-Krook model for two- and three-dimensional cavity flow simulations. <i>Physical Review E</i> , 2014 , 89, 053317	2.4	64
446	Lattice Boltzmann approach for complex nonequilibrium flows. <i>Physical Review E</i> , 2015 , 92, 043308	2.4	63

(2016-2010)

445	Multiple-relaxation-time lattice Boltzmann approach to compressible flows with flexible specific-heat ratio and Prandtl number. <i>Europhysics Letters</i> , 2010 , 90, 54003	1.6	63	
444	Preturbulent regimes in graphene flow. <i>Physical Review Letters</i> , 2011 , 106, 156601	7.4	63	
443	Mesoscopic modelling of heterogeneous boundary conditions for microchannel flows. <i>Journal of Fluid Mechanics</i> , 2006 , 548, 257	3.7	62	
442	. Computing in Science and Engineering, 2001 , 3, 26-37	1.5	62	
441	Mesoscopic simulation of non-ideal fluids with self-tuning of the equation of state. <i>Soft Matter</i> , 2012 , 8, 3798	3.6	57	
440	Lattice Boltzmann Methods for Multiphase Flow Simulations across Scales. <i>Communications in Computational Physics</i> , 2011 , 9, 269-296	2.4	56	
439	Lattice Boltzmann simulation of open flows with heat transfer. <i>Physics of Fluids</i> , 2003 , 15, 2778-2781	4.4	55	
438	Two-dimensional Navier-Stokes simulation of deformation and breakup of liquid patches. <i>Physical Review Letters</i> , 1995 , 75, 244-247	7.4	54	
437	Roughness as a Route to the Ultimate Regime of Thermal Convection. <i>Physical Review Letters</i> , 2017 , 118, 074503	7.4	53	
436	Role of Oxygen Functionalities in Graphene Oxide Architectural Laminate Subnanometer Spacing and Water Transport. <i>Environmental Science & Environmental Science & Environment</i>	10.3	53	
435	Statistical regularities in the rank-citation profile of scientists. <i>Scientific Reports</i> , 2011 , 1, 181	4.9	53	
434	Hydrokinetic approach to large-scale cardiovascular blood flow. <i>Computer Physics Communications</i> , 2010 , 181, 462-472	4.2	52	
433	Numerical simulations of ion temperature gradient-driven turbulence. <i>Physics of Fluids B</i> , 1990 , 2, 67-74	4	52	
432	Mesoscopic Models of Liquid/Solid Phase Transitions. <i>International Journal of Modern Physics C</i> , 1998 , 09, 1405-1415	1.1	51	
431	Numerical solution of the nonlinear Schrdinger equation using smoothed-particle hydrodynamics. <i>Physical Review E</i> , 2015 , 91, 053304	2.4	50	
430	Mesoscopic two-phase model for describing apparent slip in micro-channel flows. <i>Europhysics Letters</i> , 2006 , 74, 651-657	1.6	49	
429	On the Scaling of the Velocity and Temperature Structure Functions in Rayleigh-Bflard Convection. <i>Europhysics Letters</i> , 1994 , 25, 341-346	1.6	49	
428	Nonequilibrium thermohydrodynamic effects on the Rayleigh-Taylor instability in compressible flows. <i>Physical Review E</i> , 2016 , 94, 023106	2.4	49	

427	The emergence of supramolecular forces from lattice kinetic models of non-ideal fluids: applications to the rheology of soft glassy materials. <i>Soft Matter</i> , 2012 , 8, 10773	3.6	47
426	Isotropic discrete Laplacian operators from lattice hydrodynamics. <i>Journal of Computational Physics</i> , 2013 , 234, 1-7	4.1	47
425	Lattice Kinetic Theory for Numerical Combustion. <i>Journal of Scientific Computing</i> , 1997 , 12, 395-408	2.3	47
424	Phase-field lattice kinetic scheme for the numerical simulation of dendritic growth. <i>Physical Review E</i> , 2005 , 72, 066705	2.4	47
423	Prediction of coronary artery plaque progression and potential rupture from 320-detector row prospectively ECG-gated single heart beat CT angiography: Lattice Boltzmann evaluation of endothelial shear stress. <i>International Journal of Cardiovascular Imaging</i> , 2009 , 25, 289-299	2.5	46
422	Direct numerical evidence of stress-induced cavitation. <i>Journal of Fluid Mechanics</i> , 2013 , 728, 362-375	3.7	45
421	Hydrodynamic model for conductivity in graphene. Scientific Reports, 2013, 3, 1052	4.9	45
420	Numerical validation of the quantum lattice Boltzmann scheme in two and three dimensions. <i>Physical Review E</i> , 2007 , 75, 066704	2.4	45
419	Extended self-similarity in the numerical simulation of three-dimensional homogeneous flows. <i>Physical Review E</i> , 1994 , 50, R1745-R1747	2.4	45
418	Lattice Boltzmann scheme for two-dimensional magnetohydrodynamics. <i>Physical Review A</i> , 1991 , 43, 4521-4524	2.6	45
417	Non-Newtonian particulate flow simulation: A direct-forcing immersed boundarylattice Boltzmann approach. <i>Physica A: Statistical Mechanics and Its Applications</i> , 2016 , 447, 1-20	3.3	44
416	Translocation of biomolecules through solid-state nanopores: Theory meets experiments. <i>Journal of Polymer Science, Part B: Polymer Physics</i> , 2011 , 49, 985-1011	2.6	44
415	Quantum lattice Boltzmann simulation of expanding Bose-Einstein condensates in random potentials. <i>Physical Review E</i> , 2008 , 77, 066708	2.4	44
414	Improved Lattice Boltzmann Without Parasitic Currents for Rayleigh-Taylor Instability. <i>Communications in Computational Physics</i> , 2010 , 7, 423-444	2.4	44
413	Mesoscopic lattice boltzmann modeling of flowing soft systems. <i>Physical Review Letters</i> , 2009 , 102, 020	60/0/2	43
412	Kinetic theory of turbulence modeling: smallness parameter, scaling and microscopic derivation of Smagorinsky model. <i>Physica A: Statistical Mechanics and Its Applications</i> , 2004 , 338, 379-394	3.3	43
411	Big data: the end of the scientific method?. <i>Philosophical Transactions Series A, Mathematical, Physical, and Engineering Sciences</i> , 2019 , 377, 20180145	3	42
410	Lattice Boltzmann phase-field modelling of binary-alloy solidification. <i>Physica A: Statistical Mechanics and Its Applications</i> , 2006 , 362, 78-83	3.3	41

(2011-2009)

409	Capillary filling in microchannels with wall corrugations: a comparative study of the Concus-Finn criterion by continuum, kinetic, and atomistic approaches. <i>Langmuir</i> , 2009 , 25, 12653-60	4	40	
408	Polar-coordinate lattice Boltzmann modeling of compressible flows. <i>Physical Review E</i> , 2014 , 89, 01330	72.4	39	
407	Unstructured lattice Boltzmann method in three dimensions. <i>International Journal for Numerical Methods in Fluids</i> , 2005 , 49, 619-633	1.9	39	
406	Mapping reactive flow patterns in monolithic nanoporous catalysts. <i>Microfluidics and Nanofluidics</i> , 2016 , 20, 1	2.8	38	
405	Simulation of turbulent flows with the entropic multirelaxation time lattice Boltzmann method on body-fitted meshes. <i>Journal of Fluid Mechanics</i> , 2018 , 849, 35-56	3.7	38	
404	Simulation of three dimensional MHD natural convection using double MRT Lattice Boltzmann method. <i>Physica A: Statistical Mechanics and Its Applications</i> , 2019 , 515, 474-496	3.3	38	
403	Capillary filling using lattice Boltzmann equations: The case of multi-phase flows. <i>European Physical Journal: Special Topics</i> , 2009 , 166, 111-116	2.3	37	
402	Fully relativistic lattice Boltzmann algorithm. <i>Physical Review C</i> , 2011 , 84,	2.7	36	
401	Lattice Boltzmann models for nonideal fluids with arrested phase-separation. <i>Physical Review E</i> , 2008 , 77, 036705	2.4	36	
400	Ground-state computation of Bose-Einstein condensates by an imaginary-time quantum lattice Boltzmann scheme. <i>Physical Review E</i> , 2007 , 76, 036712	2.4	36	
399	Electrorheology in nanopores via lattice Boltzmann simulation. <i>Journal of Chemical Physics</i> , 2004 , 120, 4492-7	3.9	36	
398	Analysis of subgrid scale turbulence using the Boltzmann Bhatnagar-Gross-Krook kinetic equation. <i>Physical Review E</i> , 1999 , 59, R2527-R2530	2.4	36	
397	Two-dimensional turbulence with the lattice Boltzmann equation. <i>Journal of Physics A</i> , 1990 , 23, L1-L5		36	
396	Modeling realistic multiphase flows using a non-orthogonal multiple-relaxation-time lattice Boltzmann method. <i>Physics of Fluids</i> , 2019 , 31, 042105	4.4	35	
395	Lattice Boltzmann Analysis of Fluid-Structure Interaction with Moving Boundaries. <i>Communications in Computational Physics</i> , 2013 , 13, 823-834	2.4	35	
394	Evidence of thin-film precursors formation in hydrokinetic and atomistic simulations of nano-channel capillary filling. <i>Europhysics Letters</i> , 2008 , 84, 44003	1.6	35	
393	A multi-component discrete Boltzmann model for nonequilibrium reactive flows. <i>Scientific Reports</i> , 2017 , 7, 14580	4.9	34	
392	Bottom-up coarse-graining of a simple graphene model: the blob picture. <i>Journal of Chemical Physics</i> , 2011 , 134, 064106	3.9	34	

391	A note on the lattice Boltzmann method beyond the Chapman-Enskog limits. <i>Europhysics Letters</i> , 2006 , 73, 370-376	1.6	34
390	Superradiance from hydrodynamic vortices: A numerical study. <i>Physical Review A</i> , 2006 , 73,	2.6	34
389	Effects of Knudsen diffusivity on the effective reactivity of nanoporous catalyst media. <i>Journal of Computational Science</i> , 2016 , 17, 377-383	3.4	34
388	A multispeed Discrete Boltzmann Model for transcritical 2D shallow water flows. <i>Journal of Computational Physics</i> , 2015 , 284, 117-132	4.1	33
387	Three-Dimensional Lattice Pseudo-Potentials for Multiphase Flow Simulations at High Density Ratios. <i>Journal of Statistical Physics</i> , 2015 , 161, 1404-1419	1.5	32
386	Immersed Boundary T hermal Lattice Boltzmann Methods for Non-Newtonian Flows Over a Heated Cylinder: A Comparative Study. <i>Communications in Computational Physics</i> , 2015 , 18, 489-515	2.4	32
385	Interplay between shape and roughness in early-stage microcapillary imbibition. <i>Langmuir</i> , 2012 , 28, 2596-603	4	32
384	Mesoscale modelling of near-contact interactions for complex flowing interfaces. <i>Journal of Fluid Mechanics</i> , 2019 , 872, 327-347	3.7	31
383	Lattice Boltzmann simulations of capillary filling: Finite vapour density effects. <i>European Physical Journal: Special Topics</i> , 2009 , 171, 237-243	2.3	31
382	Thermohydrodynamic lattice BGK schemes with non-perturbative equilibria. <i>Europhysics Letters</i> , 1998 , 41, 279-284	1.6	31
381	Discrete Boltzmann trans-scale modeling of high-speed compressible flows. <i>Physical Review E</i> , 2018 , 97, 053312	2.4	31
380	Lattice Boltzmann modeling of water entry problems. <i>International Journal of Modern Physics C</i> , 2014 , 25, 1441012	1.1	30
379	Turbulent channel flow simulations using a coarse-grained extension of the lattice Boltzmann method. <i>Fluid Dynamics Research</i> , 1997 , 19, 289-302	1.2	30
378	Lattice Quantum Mechanics: An Application to Bose E instein Condensation. <i>International Journal of Modern Physics C</i> , 1998 , 09, 1577-1585	1.1	30
377	Non-Newtonian unconfined flow and heat transfer over a heated cylinder using the direct-forcing immersed boundary-thermal lattice Boltzmann method. <i>Physical Review E</i> , 2014 , 89, 053312	2.4	29
376	Relativistic lattice Boltzmann model with improved dissipation. <i>Physical Review D</i> , 2013 , 87,	4.9	29
375	Simulating the Immune Response on a Distributed Parallel Computer. <i>International Journal of Modern Physics C</i> , 1997 , 08, 527-545	1.1	29
374	Quantized current blockade and hydrodynamic correlations in biopolymer translocation through nanopores: evidence from multiscale simulations. <i>Nano Letters</i> , 2008 , 8, 1115-9	11.5	29

(2010-2008)

373	Duality in matrix lattice Boltzmann models. <i>Physical Review E</i> , 2008 , 78, 066701	2.4	29
372	Excised acoustic black holes: The scattering problem in the time domain. <i>Physical Review D</i> , 2005 , 72,	4.9	29
371	Towards a Renormalized Lattice Boltzmann Equation for Fluid Turbulence. <i>Journal of Statistical Physics</i> , 2002 , 107, 261-278	1.5	29
370	High-resolution lattice-gas simulation of two-dimensional turbulence. <i>Physical Review Letters</i> , 1988 , 60, 2738-2740	7.4	29
369	Fluid flow around NACA 0012 airfoil at low-Reynolds numbers with hybrid lattice Boltzmann method. <i>Computers and Fluids</i> , 2018 , 166, 200-208	2.8	28
368	Entropic lattice pseudo-potentials for multiphase flow simulations at high Weber and Reynolds numbers. <i>Physics of Fluids</i> , 2017 , 29, 092103	4.4	28
367	Derivation of the lattice Boltzmann model for relativistic hydrodynamics. <i>Physical Review D</i> , 2010 , 82,	4.9	28
366	MULTI-RELAXATION TIME LATTICE BOLTZMANN MODEL FOR MULTIPHASE FLOWS. <i>International Journal of Modern Physics C</i> , 2008 , 19, 875-902	1.1	28
365	Case report: Fibroma of tendon sheath in the distal forearm with associated median nerve neuropathy: US, CT and MR appearances. <i>Clinical Radiology</i> , 1996 , 51, 370-2	2.9	28
364	Models of polymer solutions in electrified jets and solution blowing. <i>Reviews of Modern Physics</i> , 2020 , 92,	40.5	28
363	Heterogeneous catalysis in pulsed-flow reactors with nanoporous gold hollow spheres. <i>Chemical Engineering Science</i> , 2017 , 166, 274-282	4.4	27
363 362	Heterogeneous catalysis in pulsed-flow reactors with nanoporous gold hollow spheres. <i>Chemical</i>	4·4 2·3	27
	Heterogeneous catalysis in pulsed-flow reactors with nanoporous gold hollow spheres. <i>Chemical Engineering Science</i> , 2017 , 166, 274-282 Hydrodynamics in Porous Media: A Finite Volume Lattice Boltzmann Study. <i>Journal of Scientific</i>		
362	Heterogeneous catalysis in pulsed-flow reactors with nanoporous gold hollow spheres. <i>Chemical Engineering Science</i> , 2017 , 166, 274-282 Hydrodynamics in Porous Media: A Finite Volume Lattice Boltzmann Study. <i>Journal of Scientific Computing</i> , 2014 , 59, 80-103 Finite-volume lattice Boltzmann modeling of thermal transport in nanofluids. <i>Computers and Fluids</i> ,	2.3	27
362 361	Heterogeneous catalysis in pulsed-flow reactors with nanoporous gold hollow spheres. <i>Chemical Engineering Science</i> , 2017 , 166, 274-282 Hydrodynamics in Porous Media: A Finite Volume Lattice Boltzmann Study. <i>Journal of Scientific Computing</i> , 2014 , 59, 80-103 Finite-volume lattice Boltzmann modeling of thermal transport in nanofluids. <i>Computers and Fluids</i> , 2013 , 77, 56-65 Continuum free-energy formulation for a class of lattice Boltzmann multiphase models. <i>Europhysics</i>	2.3	27
362 361 360	Heterogeneous catalysis in pulsed-flow reactors with nanoporous gold hollow spheres. <i>Chemical Engineering Science</i> , 2017 , 166, 274-282 Hydrodynamics in Porous Media: A Finite Volume Lattice Boltzmann Study. <i>Journal of Scientific Computing</i> , 2014 , 59, 80-103 Finite-volume lattice Boltzmann modeling of thermal transport in nanofluids. <i>Computers and Fluids</i> , 2013 , 77, 56-65 Continuum free-energy formulation for a class of lattice Boltzmann multiphase models. <i>Europhysics Letters</i> , 2009 , 86, 24005 Numerical stability of Entropic versus positivity-enforcing Lattice Boltzmann schemes. <i>Mathematics</i>	2.3 2.8	27 27 27
362 361 360 359	Heterogeneous catalysis in pulsed-flow reactors with nanoporous gold hollow spheres. <i>Chemical Engineering Science</i> , 2017 , 166, 274-282 Hydrodynamics in Porous Media: A Finite Volume Lattice Boltzmann Study. <i>Journal of Scientific Computing</i> , 2014 , 59, 80-103 Finite-volume lattice Boltzmann modeling of thermal transport in nanofluids. <i>Computers and Fluids</i> , 2013 , 77, 56-65 Continuum free-energy formulation for a class of lattice Boltzmann multiphase models. <i>Europhysics Letters</i> , 2009 , 86, 24005 Numerical stability of Entropic versus positivity-enforcing Lattice Boltzmann schemes. <i>Mathematics and Computers in Simulation</i> , 2006 , 72, 227-231 An Integer Lattice Realization of a Lax Scheme for Transport Processes in Multiple Component	2.3 2.8 1.6	27 27 27 27

355	Graphics processing unit implementation of lattice Boltzmann models for flowing soft systems. <i>Physical Review E</i> , 2009 , 80, 066707	2.4	26
354	Modern lattice Boltzmann methods for multiphase microflows. <i>IMA Journal of Applied Mathematics</i> , 2011 , 76, 712-725	1	26
353	Lattice Boltzmann spray-like fluids. <i>Europhysics Letters</i> , 2008 , 82, 24005	1.6	26
352	On the Hydrodynamic Behaviour of the Lattice Boltzmann Equation. <i>Europhysics Letters</i> , 1990 , 13, 411-	4166	26
351	Bridging the gaps at the physics-chemistry-biology interface. <i>Philosophical Transactions Series A, Mathematical, Physical, and Engineering Sciences</i> , 2016 , 374,	3	26
350	Hybrid lattice Boltzmann method on overlapping grids. <i>Physical Review E</i> , 2017 , 95, 013309	2.4	25
349	Regularization of the slip length divergence in water nanoflows by inhomogeneities at the Angstrom scale. <i>Soft Matter</i> , 2013 , 9, 8526	3.6	25
348	Solving the Fokker-Planck kinetic equation on a lattice. <i>Physical Review E</i> , 2006 , 73, 066707	2.4	25
347	Molecular dynamics simulation of ratchet motion in an asymmetric nanochannel. <i>Physical Review Letters</i> , 2006 , 97, 144509	7.4	25
346	Boundary Conditions for Thermal Lattice Boltzmann Simulations. <i>Lecture Notes in Computer Science</i> , 2003 , 977-986	0.9	25
345	Accelerated Lattice Boltzmann Schemes for Steady-State Flow Simulations. <i>Journal of Scientific Computing</i> , 2001 , 16, 135-144	2.3	25
344	Regularized lattice Boltzmann multicomponent models for low capillary and Reynolds microfluidics flows. <i>Computers and Fluids</i> , 2018 , 167, 33-39	2.8	24
343	DSMCIBM mapping scheme for rarefied and non-rarefied gas flows. <i>Journal of Computational Science</i> , 2016 , 17, 357-369	3.4	24
342	Mesoscopic simulations at the physics-chemistry-biology interface. <i>Reviews of Modern Physics</i> , 2019 , 91,	40.5	23
341	Sub-ms dynamics of the instability onset of electrospinning. Soft Matter, 2015, 11, 3424-31	3.6	23
340	Multiscale Simulation of Cardiovascular flows on the IBM Bluegene/P: Full Heart-Circulation System at Red-Blood Cell Resolution 2010 ,		23
339	Herschel-Bulkley rheology from lattice kinetic theory of soft glassy materials. <i>Europhysics Letters</i> , 2010 , 91, 14003	1.6	23
338	Equilibria for discrete kinetic equations. <i>Physical Review E</i> , 1998 , 58, R4053-R4056	2.4	23

337	Nonlinear Stability of Compressible Thermal Lattice BGK Models. <i>SIAM Journal of Scientific Computing</i> , 1999 , 21, 366-377	2.6	23	
336	Reassessing the single relaxation time Lattice Boltzmann method for the simulation of Darcy flows. <i>International Journal of Modern Physics C</i> , 2016 , 27, 1650037	1.1	22	
335	Finite volume formulation of thermal lattice Boltzmann method. <i>International Journal of Numerical Methods for Heat and Fluid Flow</i> , 2014 , 24, 270-289	4.5	22	
334	Direct evidence of plastic events and dynamic heterogeneities in soft-glasses. <i>Soft Matter</i> , 2014 , 10, 461	15.24	22	
333	Formal analogy between the Dirac equation in its Majorana form and the discrete-velocity version of the Boltzmann kinetic equation. <i>Physical Review Letters</i> , 2013 , 111, 160602	7.4	22	•
332	Three Routes to the Friction Matrix and Their Application to the Coarse-Graining of Atomic Lattices. <i>Macromolecular Theory and Simulations</i> , 2011 , 20, 526-540	1.5	22	
331	Isotropy of three-dimensional quantum lattice Boltzmann schemes. <i>Physical Review E</i> , 2011 , 83, 046706	2.4	22	
330	Polymer dynamics in wall turbulent flow. <i>Europhysics Letters</i> , 2002 , 58, 616-622	1.6	22	
329	Lattice Boltzmann Method for Irregular Grids. <i>Physical Review Letters</i> , 1999 , 82, 5245-5248	7.4	22	
328	Turbulence Modelling by Nonhydrodynamic Variables. <i>Europhysics Letters</i> , 1990 , 13, 727-732	1.6	22	
327	Quantum lattice Boltzmann is a quantum walk. EPJ Quantum Technology, 2015, 2,	6.9	21	
326	Lattice differential operators for computational physics. <i>Europhysics Letters</i> , 2013 , 101, 50006	1.6	21	
325	Lattice Boltzmann Simulation of Cavitating Flows. <i>Communications in Computational Physics</i> , 2013 , 13, 685-695	2.4	21	
324	Comment on "Numerics of the lattice Boltzmann method: effects of collision models on the lattice Boltzmann simulations". <i>Physical Review E</i> , 2011 , 84, 068701	2.4	21	
323	Lattice Boltzmann schemes without coordinates. <i>Philosophical Transactions Series A, Mathematical, Physical, and Engineering Sciences</i> , 2004 , 362, 1763-71	3	21	
322	Modeling pattern formation in soft flowing crystals. <i>Physical Review Fluids</i> , 2019 , 4,	2.8	21	
321	Towards Exascale Lattice Boltzmann computing. Computers and Fluids, 2019, 181, 107-115	2.8	21	
320	Effect of nanoscale flows on the surface structure of nanoporous catalysts. <i>Journal of Chemical Physics</i> , 2017 , 146, 214703	3.9	20	

319	Lattice Boltzmann model for ultrarelativistic flows. <i>Physical Review D</i> , 2013 , 87,	4.9	20
318	Lattice Boltzmann Simulation of Reactive Microflows over Catalytic Surfaces. <i>Journal of Statistical Physics</i> , 2002 , 107, 343-366	1.5	20
317	Computational modeling of the immune response to tumor antigens. <i>Journal of Theoretical Biology</i> , 2005 , 237, 390-400	2.3	20
316	The unstructured lattice Boltzmann method for non-Newtonian flows. <i>Journal of Statistical Mechanics: Theory and Experiment</i> , 2009 , 2009, P06005	1.9	19
315	Multiscale Simulation of Nanobiological Flows. Computing in Science and Engineering, 2008, 10, 10-19	1.5	19
314	Two-dimensional lattice Boltzmann simulation of colloid migration in rough-walled narrow flow channels. <i>Physical Review E</i> , 2008 , 77, 031405	2.4	19
313	Unstructured lattice Boltzmann equation with memory. <i>Mathematics and Computers in Simulation</i> , 2006 , 72, 237-241	3.3	19
312	Dynamics of trapped two-component Fermi gas: Temperature dependence of the transition from collisionless to collisional regime. <i>Physical Review A</i> , 2003 , 67,	2.6	19
311	Particle-inspired scheme for the GrossPitaevski equation: An application to BoseEinstein condensation. <i>Computer Physics Communications</i> , 2000 , 129, 82-90	4.2	19
310	Relativistic lattice Boltzmann method for quark-gluon plasma simulations. <i>Physical Review D</i> , 2011 , 84,	4.9	18
309	A LATTICE BOLTZMANN FOR DISORDERED FLUIDS. <i>International Journal of Modern Physics B</i> , 2003 , 17, 145-148	1.1	18
308	ACCELERATED LATTICE BOLTZMANN SCHEME FOR STEADY-STATE FLOWS. <i>International Journal of Modern Physics B</i> , 2003 , 17, 1-7	1.1	18
307	Energy dissipation and permeability in porous media. Europhysics Letters, 2002, 60, 72-78	1.6	18
306	Elucidating the mechanism of step emulsification. <i>Physical Review Fluids</i> , 2018 , 3,	2.8	18
305	Tailoring boundary geometry to optimize heat transport in turbulent convection. <i>Europhysics Letters</i> , 2015 , 111, 44005	1.6	17
304	Particle Shape Influences Settling and Sorting Behavior in Microfluidic Domains. <i>Scientific Reports</i> , 2018 , 8, 8583	4.9	17
303	Towards a unified lattice kinetic scheme for relativistic hydrodynamics. <i>Physical Review E</i> , 2017 , 95, 053	3 <u>0.4</u>	17
302	Numerical analysis of the averaged flow field in a turbulent lattice Boltzmann simulation. <i>Physica A: Statistical Mechanics and Its Applications</i> , 2006 , 362, 6-10	3.3	17

301	Computational models for wave-particle interactions. Computer Physics Communications, 1986, 40, 137-	145.12	17
300	Cooperativity flows and shear-bandings: a statistical field theory approach. Soft Matter, 2016, 12, 514-3	0 3.6	16
299	JETSPIN: A specific-purpose open-source software for simulations of nanofiber electrospinning. <i>Computer Physics Communications</i> , 2015 , 197, 227-238	4.2	16
298	Novel nonequilibrium steady states in multiple emulsions. <i>Physics of Fluids</i> , 2020 , 32, 017102	4.4	16
297	Entropic lattice Boltzmann model for charged leaky dielectric multiphase fluids in electrified jets. <i>Physical Review E</i> , 2018 , 97, 033308	2.4	16
296	Effects of non-linear rheology on electrospinning process: A model study. <i>Mechanics Research Communications</i> , 2014 , 61, 41-46	2.2	16
295	The Z-index: A geometric representation of productivity and impact which accounts for information in the entire rank-citation profile. <i>Journal of Informetrics</i> , 2013 , 7, 823-832	3.1	16
294	Two- and three-dimensional lattice Boltzmann simulations of particle migration in microchannels. <i>Microfluidics and Nanofluidics</i> , 2013 , 15, 785-796	2.8	16
293	Ultrarelativistic transport coefficients in two dimensions. <i>Journal of Statistical Mechanics: Theory and Experiment</i> , 2013 , 2013, P02036	1.9	16
292	Flow through randomly curved manifolds. Scientific Reports, 2013, 3, 3106	4.9	16
291	Extended friction elucidates the breakdown of fast water transport in graphene oxide membranes. <i>Europhysics Letters</i> , 2016 , 116, 54002	1.6	16
2 90	A moving-grid approach for fluid Itructure interaction problems with hybrid lattice Boltzmann method. <i>Computer Physics Communications</i> , 2019 , 234, 137-145	4.2	15
289	Kinetic approach to relativistic dissipation. <i>Physical Review E</i> , 2017 , 96, 023305	2.4	15
288	Quantum Simulator for Transport Phenomena in Fluid Flows. Scientific Reports, 2015, 5, 13153	4.9	15
287	Lattice Boltzmann Simulation of Mixed Convection Heat Transfer in a Driven Cavity with Non-uniform Heating of the Bottom Wall. <i>Communications in Theoretical Physics</i> , 2015 , 63, 91-100	2.4	15
286	QUASIEQUILIBRIUM LATTICE BOLTZMANN MODELS WITH TUNABLE PRANDTL NUMBER FOR INCOMPRESSIBLE HYDRODYNAMICS. <i>International Journal of Modern Physics C</i> , 2013 , 24, 1340004	1.1	15
285	APPLICATIONS OF FINITE-DIFFERENCE LATTICE BOLTZMANN METHOD TO BREAKUP AND COALESCENCE IN MULTIPHASE FLOWS. <i>International Journal of Modern Physics C</i> , 2009 , 20, 1803-1816	1.1	15
284	Three-band decomposition analysis of wall shear stress in pulsatile flows. <i>Physical Review E</i> , 2011 , 83, 031902	2.4	15

283	Phase-field model of long-time glasslike relaxation in binary fluid mixtures. <i>Physical Review Letters</i> , 2011 , 106, 164501	7.4	15
282	Rupture of a ferrofluid droplet in external magnetic fields using a single-component lattice Boltzmann model for nonideal fluids. <i>Physical Review E</i> , 2009 , 79, 056706	2.4	15
281	Hydrokinetic simulations of nanoscopic precursor films in rough channels. <i>Journal of Statistical Mechanics: Theory and Experiment</i> , 2009 , 2009, P06007	1.9	15
280	Extended self-similarity in boundary layer turbulence. <i>Physical Review E</i> , 1997 , 55, 6985-6988	2.4	15
279	Lattice Boltzmann equation: Failure or success?. <i>Physica A: Statistical Mechanics and Its Applications</i> , 1997 , 240, 221-228	3.3	15
278	Output coupling of Bose condensates from atomic tunnel arrays: a numerical study. <i>Physics Letters, Section A: General, Atomic and Solid State Physics</i> , 1999 , 260, 86-93	2.3	15
277	Neural network models for the anisotropic Reynolds stress tensor in turbulent channel flow. <i>Journal of Turbulence</i> , 2020 , 21, 525-543	2.1	15
276	Mesoscale modelling of soft flowing crystals. <i>Philosophical Transactions Series A, Mathematical, Physical, and Engineering Sciences</i> , 2019 , 377, 20180149	3	14
275	Internal dynamics and activated processes in soft-glassy materials. Soft Matter, 2015, 11, 1271-80	3.6	14
274	Regularized lattice BGK versus highly accurate spectral methods for cavity flow simulations. <i>International Journal of Modern Physics C</i> , 2014 , 25, 1441003	1.1	14
273	Rheological properties of soft-glassy flows from hydro-kinetic simulations. <i>Europhysics Letters</i> , 2013 , 104, 48006	1.6	14
272	A New Boundary Condition for Three-Dimensional Lattice Boltzmann Simulations of Capillary Filling in Rough Micro-Channels. <i>Communications in Computational Physics</i> , 2011 , 9, 1284-1292	2.4	14
271	Lattice-Boltzmann simulations of repulsive particle-particle and particle-wall interactions: coughing and choking. <i>Journal of Chemical Physics</i> , 2010 , 132, 134111	3.9	14
270	Nanoflows through disordered media: A joint lattice Boltzmann and molecular dynamics investigation. <i>Europhysics Letters</i> , 2010 , 89, 44001	1.6	14
269	Modelling wall shear stress in small arteries using the Lattice Boltzmann method: influence of the endothelial wall profile. <i>Medical Engineering and Physics</i> , 2011 , 33, 832-9	2.4	14
268	Optimization Strategies for the Entropic Lattice Boltzmann Method. <i>Journal of Scientific Computing</i> , 2007 , 30, 369-387	2.3	14
267	Lattice Boltzmann schemes for quantum applications. Computer Physics Communications, 2002, 146, 317	′ _z β 2 3	14
266	Fluctuation Correlations in Reaction-Diffusion Systems: Reactive Lattice Gas Automata Approach. <i>Europhysics Letters</i> , 1992 , 20, 627-632	1.6	14

265	Computing of RF heating and current drive in Tokamaks. <i>Computer Physics Communications</i> , 1986 , 43, 125-141	4.2	14
264	Generation of superthermal electrons interacting with waves in lower-hybrid range of frequency revisited. <i>Plasma Physics and Controlled Fusion</i> , 1985 , 27, 863-871	2	14
263	Mesoscopic model for soft flowing systems with tunable viscosity ratio. <i>Physical Review Fluids</i> , 2018 , 3,	2.8	14
262	Jetting to dripping transition: Critical aspect ratio in step emulsifiers. <i>Physics of Fluids</i> , 2019 , 31, 021703 ₂	4-4	14
261	Extreme flow simulations reveal skeletal adaptations of deep-sea sponges. <i>Nature</i> , 2021 , 595, 537-541	50.4	14
260	Energy dissipation in flows through curved spaces. <i>Scientific Reports</i> , 2017 , 7, 42350	4.9	13
259	Effects of orthogonal rotating electric fields on electrospinning process. <i>Physics of Fluids</i> , 2017 , 29, 0820	ρ 3	13
258	Multiscale Hemodynamics Using GPU Clusters. <i>Communications in Computational Physics</i> , 2012 , 11, 48-64	2.4	13
257	Transition in the equilibrium distribution function of relativistic particles. <i>Scientific Reports</i> , 2012 , 2, 611 ₂	4.9	13
256	Capillary filling for multicomponent fluid using the pseudo-potential Lattice Boltzmann method. European Physical Journal: Special Topics, 2009 , 171, 223-228	2.3	13
255	EXPLORING DNA TRANSLOCATION THROUGH A NANOPORE VIA A MULTISCALE LATTICE-BOLTZMANN MOLECULAR-DYNAMICS METHODOLOGY. International Journal of Modern Physics C, 2007 , 18, 685-692	1.1	13
254	Transition to hydrodynamics in colliding fermion clouds. <i>Journal of Physics B: Atomic, Molecular and Optical Physics</i> , 2004 , 37, S91-S99	1.3	13
253	Large-scale cellular automata simulations of the immune system response. <i>Physical Review E</i> , 2000 , 61, 1851-4	2.4	13
252	Lattice Boltzmann accelerated direct simulation Monte Carlo for dilute gas flow simulations. Philosophical Transactions Series A, Mathematical, Physical, and Engineering Sciences, 2016, 374,	3	13
251	Relativistic lattice Boltzmann methods: Theory and applications. <i>Physics Reports</i> , 2020 , 863, 1-63	27.7	12
250	Kinetic formulation of the Kohn-Sham Equations for ab initio electronic structure calculations. Physical Review Letters, 2014 , 113, 096402	7.4	12
249	Rayleigh-BBard instability in graphene. <i>Physical Review B</i> , 2015 , 91,	3.3	12
248	Relativistic lattice kinetic theory: Recent developments and future prospects. <i>European Physical Journal: Special Topics</i> , 2014 , 223, 2177-2188	2.3	12

247	Mass flux through asymmetric nanopores: Microscopic versus hydrodynamic motion. <i>Journal of Chemical Physics</i> , 2008 , 129, 124717	3.9	12
246	Front pinning in capillary filling of chemically coated channels. <i>Physical Review E</i> , 2008 , 78, 036305	2.4	12
245	Lattice Boltzmann equation for relativistic quantum mechanics. <i>Philosophical Transactions Series A, Mathematical, Physical, and Engineering Sciences</i> , 2002 , 360, 429-36	3	12
244	Scaling Behaviour of the Velocity and Temperature Correlation Functions in 3D Convective Turbulence. <i>Europhysics Letters</i> , 1994 , 28, 231-236	1.6	12
243	On the small-scale dynamical behavior of lattice BGK and lattice Boltzmann schemes. <i>Journal of Scientific Computing</i> , 1993 , 8, 219-230	2.3	12
242	Entropy production in thermal phase separation: a kinetic-theory approach. <i>Soft Matter</i> , 2019 , 15, 2245	- <u>3</u> 259	11
241	Energy Conserving Lattice Boltzmann Models for Incompressible Flow Simulations. <i>Communications in Computational Physics</i> , 2013 , 13, 603-613	2.4	11
240	MODELING OF BIFURCATION PHENOMENA IN SUDDENLY EXPANDED FLOWS WITH A NEW FINITE VOLUME LATTICE BOLTZMANN METHOD. <i>International Journal of Modern Physics C</i> , 2011 , 22, 977-1003	1.1	11
239	Chemical efficiency of reactive microflows with heterogeneous catalysis: a lattice Boltzmann study. <i>EPJ Applied Physics</i> , 2001 , 16, 71-84	1.1	11
238	A high performance simulator of the immune response. <i>Future Generation Computer Systems</i> , 1999 , 15, 333-342	7.5	11
237	Preliminary analysis of the scaling exponents in channel flow turbulence. <i>Fluid Dynamics Research</i> , 1999 , 24, 201-209	1.2	11
236	Iterative algorithms for the solution of nonsymmetric systems in the modelling of weak plasma turbulence. <i>Journal of Computational Physics</i> , 1989 , 80, 489-497	4.1	11
235	Modeling drug delivery from multiple emulsions. <i>Physical Review E</i> , 2020 , 102, 023114	2.4	11
234	The vortex-driven dynamics of droplets within droplets. <i>Nature Communications</i> , 2021 , 12, 82	17.4	11
233	Prospects for the Detection of Electronic Preturbulence in Graphene. <i>Physical Review Letters</i> , 2018 , 121, 236602	7.4	11
232	Different regimes of the uniaxial elongation of electrically charged viscoelastic jets due to dissipative air drag. <i>Mechanics Research Communications</i> , 2015 , 69, 97-102	2.2	10
231	Three-Dimensional Model for Electrospinning Processes in Controlled Gas Counterflow. <i>Journal of Physical Chemistry A</i> , 2016 , 120, 4884-92	2.8	10
230	Lattice Boltzmann method as a computational framework for multiscale haemodynamics. Mathematical and Computer Modelling of Dynamical Systems, 2014, 20, 470-490	1	10

229	UNSTRUCTURED LATTICE BOLTZMANN METHOD FOR HEMODYNAMIC FLOWS WITH SHEAR-DEPENDENT VISCOSITY. <i>International Journal of Modern Physics C</i> , 2010 , 21, 795-811	1.1	10
228	Lattice Boltzmann method for electromagnetic wave propagation. <i>Europhysics Letters</i> , 2011 , 96, 14002	1.6	10
227	Corner liquid imbibition during capillary penetration in lithographically made microchannels. <i>Applied Physics Letters</i> , 2009 , 94, 171901	3.4	10
226	Bose-Einstein condensates and the numerical solution of the Gross-Pitaevskii equation. <i>Computing in Science and Engineering</i> , 2005 , 7, 48-57	1.5	10
225	Probing the energy bands of a Bose-Einstein condensate in an optical lattice. <i>Physical Review A</i> , 2001 , 63,	2.6	10
224	COMPUTING STEADY STATE FLOWS WITH AN ACCELERATED LATTICE BOLTZMANN TECHNIQUE. International Journal of Modern Physics C, 2002 , 13, 675-687	1.1	10
223	Resummation techniques in the kinetic-theoretical approach to subgrid turbulence modeling. <i>Physica A: Statistical Mechanics and Its Applications</i> , 2000 , 280, 92-98	3.3	10
222	Dynamic mesh refinement for discrete models of jet electro-hydrodynamics. <i>Journal of Computational Science</i> , 2016 , 17, 325-333	3.4	10
221	Chimaera simulation of complex states of flowing matter. <i>Philosophical Transactions Series A, Mathematical, Physical, and Engineering Sciences</i> , 2016 , 374,	3	10
220	Nonlinear Langevin model for the early-stage dynamics of electrospinning jets. <i>Molecular Physics</i> , 2015 , 113, 2435-2441	1.7	9
219	Lattice Boltzmann simulations of vortex entrapment of particles in a microchannel with curved or flat edges. <i>Microfluidics and Nanofluidics</i> , 2015 , 18, 1165-1175	2.8	9
218	Lattice Boltzmann model for resistive relativistic magnetohydrodynamics. <i>Physical Review E</i> , 2015 , 92, 023309	2.4	9
217	Ultrathin Fibers from Electrospinning Experiments under Driven Fast-Oscillating Perturbations. <i>Physical Review Applied</i> , 2014 , 2,	4.3	9
216	A note on equilibrium boundary conditions in lattice Boltzmann fluid dynamic simulations. <i>European Physical Journal: Special Topics</i> , 2009 , 171, 213-221	2.3	9
215	Endothelial shear stress from large-scale blood flow simulations. <i>Philosophical Transactions Series A, Mathematical, Physical, and Engineering Sciences</i> , 2011 , 369, 2354-61	3	9
214	LATTICE B OLTZMANN SIMULATION OF DENSE NANOFLOWS: A COMPARISON WITH MOLECULAR DYNAMICS AND NAVIER B TOKES SOLUTIONS. <i>International Journal of Modern Physics C</i> , 2007 , 18, 667-6	7 5 1	9
213	A lattice Boltzmann study of reactive microflows. <i>Computer Physics Communications</i> , 2002 , 147, 516-527	14.2	9
212	On the generation of superthermal electrons in lower-hybrid current-drive experiments. <i>Physics Letters, Section A: General, Atomic and Solid State Physics</i> , 1984 , 106, 137-139	2.3	9

211	Enhanced computational performance of the lattice Boltzmann model for simulating micron- and submicron-size particle flows and non-Newtonian fluid flows. <i>Computer Physics Communications</i> , 2017 , 213, 64-71	4.2	8
210	Relativistic dissipation obeys Chapman-Enskog asymptotics: Analytical and numerical evidence as a basis for accurate kinetic simulations. <i>Physical Review E</i> , 2019 , 99, 052126	2.4	8
209	Striated populations in disordered environments with advection. <i>Physica A: Statistical Mechanics and Its Applications</i> , 2017 , 465, 500-514	3.3	8
208	Fluctuation-dissipation relation from a FLB-BGK model. <i>Europhysics Letters</i> , 2012 , 99, 64001	1.6	8
207	KLEIN TUNNELING IN THE PRESENCE OF RANDOM IMPURITIES. <i>International Journal of Modern Physics C</i> , 2012 , 23, 1250080	1.1	8
206	Simulation of single-file ion transport with the lattice Fokker-Planck equation. <i>Physical Review E</i> , 2006 , 73, 017701	2.4	8
205	Lattice BBGKY scheme for two-phase flows: One-dimensional case. <i>Mathematics and Computers in Simulation</i> , 2006 , 72, 249-252	3.3	8
204	Lattice Boltzmann B oisson method for electrorheological nanoflows in ion channels. <i>Computer Physics Communications</i> , 2005 , 169, 203-206	4.2	8
203	Dark energy from cosmological fluids obeying a Shan-Chen nonideal equation of state. <i>Physical Review D</i> , 2013 , 88,	4.9	7
202	Universal mechanism for saturation of vorticity growth in fully developed fluid turbulence. <i>Journal of Fluid Mechanics</i> , 2013 , 728,	3.7	7
201	A NOTE ON THE LATTICE BOLTZMANN VERSUS FINITE-DIFFERENCE METHODS FOR THE NUMERICAL SOLUTION OF THE FISHER'S EQUATION. <i>International Journal of Modern Physics C</i> , 2014 , 25, 1340015	1.1	7
200	Lattice kinetic scheme for generalized coordinates and curved spaces. <i>International Journal of Modern Physics C</i> , 2014 , 25, 1441001	1.1	7
199	Quantized biopolymer translocation through nanopores: departure from simple scaling. <i>Physical Review E</i> , 2009 , 79, 030901	2.4	7
198	Sensitivity of the active fracture model parameter to fracture network orientation and injection scenarios. <i>Hydrogeology Journal</i> , 2009 , 17, 1347-1358	3.1	7
197	Collective Dynamics in the Immune System Response. <i>Physical Review Letters</i> , 1997 , 79, 4493-4496	7.4	7
196	Analogy between capillary motion and Friedmann-Robertson-Walker cosmology. <i>Europhysics Letters</i> , 2008 , 82, 34003	1.6	7
195	LATTICE FOKKER P LANCK EQUATION. <i>International Journal of Modern Physics C</i> , 2006 , 17, 459-470	1.1	7
194	The finite volume formulation of the Lattice Boltzmann equation. <i>Transport Theory and Statistical Physics</i> , 1994 , 23, 163-171		7

(2006-2008)

193	Parallel Multiscale Modeling of Biopolymer Dynamics with Hydrodynamic Correlations. <i>International Journal for Multiscale Computational Engineering</i> , 2008 , 6, 25-37	2.4	7
192	Shear dynamics of polydisperse double emulsions. <i>Physics of Fluids</i> , 2021 , 33, 047105	4.4	7
191	Lattice Boltzmann beyond Navier-Stokes: Where do we stand? 2016,		7
190	Curvature dynamics and long-range effects on fluid-fluid interfaces with colloids. <i>Soft Matter</i> , 2019 , 15, 2848-2862	3.6	7
189	General velocity, pressure, and initial condition for two-dimensional and three-dimensional lattice Boltzmann simulations. <i>Physical Review E</i> , 2017 , 95, 033301	2.4	6
188	Combined effects of fluid type and particle shape on particles flow in microfluidic platforms. <i>Microfluidics and Nanofluidics</i> , 2019 , 23, 1	2.8	6
187	Nanofluid Heat Transfer in Wavy-Wall Channels with Different Geometries: A Finite-Volume Lattice Boltzmann Study. <i>Journal of Scientific Computing</i> , 2020 , 83, 1	2.3	6
186	Poiseuille flow in curved spaces. <i>Physical Review E</i> , 2016 , 93, 043316	2.4	6
185	Semi-spectral method for the Wigner equation. <i>Journal of Computational Physics</i> , 2016 , 305, 1015-1036	4.1	6
184	On the impact of controlled wall roughness shape on the flow of a soft material. <i>Europhysics Letters</i> , 2019 , 127, 34005	1.6	6
183	Lattice Boltzmann modeling of water-like fluids. Frontiers in Physics, 2014, 2,	3.9	6
182	The importance of chemical potential in the determination of water slip in nanochannels. <i>European Physical Journal E</i> , 2015 , 38, 127	1.5	6
181	Risk assessment of atherosclerotic plaques based on global biomechanics. <i>Medical Engineering and Physics</i> , 2013 , 35, 1290-7; discussion 1290	2.4	6
180	Markovian dissipative coarse grained molecular dynamics for a simple 2D graphene model. <i>Journal of Chemical Physics</i> , 2012 , 137, 234103	3.9	6
179	MODELING FLUID FLOWS IN DISTENSIBLE TUBES FOR APPLICATIONS IN HEMODYNAMICS. <i>International Journal of Modern Physics C</i> , 2013 , 24, 1350030	1.1	6
178	Matrix lattice Boltzmann reloaded. <i>Philosophical Transactions Series A, Mathematical, Physical, and Engineering Sciences</i> , 2011 , 369, 2202-10	3	6
177	Lattice Boltzmann method for quantum field theory. <i>Journal of Physics A: Mathematical and Theoretical</i> , 2007 , 40, F559-F567	2	6
176	Turbulence Effects on Kinetic Equations. <i>Journal of Scientific Computing</i> , 2006 , 28, 459-466	2.3	6

175	Energy dissipation measures in three-dimensional disordered porous media. <i>Physical Review E</i> , 2005 , 72, 046705	2.4	6
174	Intracellular signal propagation in a two-dimensional autocatalytic reaction model. <i>Physical Review E</i> , 2002 , 66, 031905	2.4	6
173	Supersymmetry solution for finitely extensible dumbbell model. Europhysics Letters, 2000, 51, 355-360	1.6	6
172	MULTISCALE LATTICE BOLTZMANN SCHEMES: A PRELIMINARY APPLICATION TO AXIAL TURBOMACHINE FLOW SIMULATIONS. <i>International Journal of Modern Physics C</i> , 2000 , 11, 233-245	1.1	6
171	Intermittency and eddy viscosities in dynamical models of turbulence. <i>Physics of Fluids</i> , 1999 , 11, 1221-1	242.8	6
170	A REVIEW OF THE LATTICE BOLTZMANN METHOD. <i>International Journal of Modern Physics C</i> , 1993 , 04, 409-415	1.1	6
169	Bifurcations of a lattice gas flow under external forcing. <i>Journal of Statistical Physics</i> , 1989 , 56, 69-81	1.5	6
168	Flow through geometrically irregular media with lattice gas automata. <i>Meccanica</i> , 1990 , 25, 253-257	2.1	6
167	Similarity solutions of the one-dimensional Fokker-Planck equation. <i>Physical Review A</i> , 1986 , 33, 4419-44	4 <u>2</u> 8	6
166	Cellular automata modeling on IBM 3090/VF. Computer Physics Communications, 1987, 47, 173-180	4.2	6
165	Concentrated phase emulsion with multicore morphology under shear: A numerical study. <i>Physical Review Fluids</i> , 2020 , 5,	2.8	6
164	Beyond moments: relativistic lattice Boltzmann methods for radiative transport in computational astrophysics. <i>Monthly Notices of the Royal Astronomical Society</i> , 2020 , 498, 3374-3394	4.3	6
163	LBsoft: A parallel open-source software for simulation of colloidal systems. <i>Computer Physics Communications</i> , 2020 , 256, 107455	4.2	6
162	On the effects of surface corrugation on the hydrodynamic performance of cylindrical rigid structures. <i>European Physical Journal E</i> , 2018 , 41, 95	1.5	5
161	Turbulent Transport Processes at Rough Surfaces with Geophysical Applications. <i>Procedia IUTAM</i> , 2015 , 15, 34-40		5
160	Novel risk predictor for thrombus deposition in abdominal aortic aneurysms. <i>Europhysics Letters</i> , 2015 , 112, 28001	1.6	5
159	Relativistic effects on the Richtmyer-Meshkov instability. <i>Physical Review D</i> , 2014 , 90,	4.9	5
158	Particle motion in a photon gas: friction matters. General Relativity and Gravitation, 2012, 44, 2669-2680	2.3	5

157	Friction forces in cosmological models. European Physical Journal C, 2013, 73, 1	4.2	5
156	Magnetically driven droplet break-up and vaporization: a lattice Boltzmann study. <i>Journal of Statistical Mechanics: Theory and Experiment</i> , 2010 , 2010, P05010	1.9	5
155	Towards a mesoscopic model of water-like fluids with hydrodynamic interactions. <i>Journal of Chemical Physics</i> , 2011 , 135, 124902	3.9	5
154	The Lattice Boltzmann Method and Multiscale Hemodynamics: Recent Advances and Perspectives. <i>IFAC Postprint Volumes IPPV / International Federation of Automatic Control</i> , 2012 , 45, 30-39		5
153	Numerical simulation of conformational variability in biopolymer translocation through wide nanopores. <i>Journal of Statistical Mechanics: Theory and Experiment</i> , 2009 , 2009, P06009	1.9	5
152	Mesoscopic modelling of local phase transitions and apparent-slip phenomena in microflows. <i>Mathematics and Computers in Simulation</i> , 2006 , 72, 84-88	3.3	5
151	Relaxation approximations and kinetic models of fluid turbulence. <i>Physica A: Statistical Mechanics and Its Applications</i> , 2006 , 362, 1-5	3.3	5
150	Explicit Finite-Difference and Particle Method for the Dynamics of Mixed Bose-Condensate and Cold-Atom Clouds. <i>Journal of Computational Physics</i> , 2002 , 182, 368-391	4.1	5
149	Numerical Study of Thermal Diffusion and Diffusion Thermo Effects in a Differentially Heated and Salted Driven Cavity Using MRT-Lattice Boltzmann Finite Difference Model. <i>International Journal of Applied Mechanics</i> , 2021 , 13, 2150049	2.4	5
148	Mesoscale modelling of droplets' self-assembly in microfluidic channels. <i>Soft Matter</i> , 2021 , 17, 2374-2	383.6	5
147	Integer lattice dynamics for Vlasov Poisson. <i>Monthly Notices of the Royal Astronomical Society</i> , 2017 , 465, 3154-3162	4.3	4
147		4·3 2·7	4
	2017, 465, 3154-3162 Dissipative hydrodynamics of relativistic shock waves in a quark gluon plasma: Comparing and		
146	2017, 465, 3154-3162 Dissipative hydrodynamics of relativistic shock waves in a quark gluon plasma: Comparing and benchmarking alternate numerical methods. <i>Physical Review C</i> , 2020, 101, Numerical evidence of electron hydrodynamic whirlpools in graphene samples. <i>Computers and</i>	2.7	4
146	Dissipative hydrodynamics of relativistic shock waves in a quark gluon plasma: Comparing and benchmarking alternate numerical methods. <i>Physical Review C</i> , 2020 , 101, Numerical evidence of electron hydrodynamic whirlpools in graphene samples. <i>Computers and Fluids</i> , 2018 , 172, 644-650	2.7	4
146 145 144	Dissipative hydrodynamics of relativistic shock waves in a quark gluon plasma: Comparing and benchmarking alternate numerical methods. <i>Physical Review C</i> , 2020 , 101, Numerical evidence of electron hydrodynamic whirlpools in graphene samples. <i>Computers and Fluids</i> , 2018 , 172, 644-650 Lattice Wigner equation. <i>Physical Review E</i> , 2018 , 97, 013308 Spread of consensus in self-organized groups of individuals: Hydrodynamics matters. <i>Europhysics</i>	2.7 2.8 2.4	4 4
146 145 144 143	Dissipative hydrodynamics of relativistic shock waves in a quark gluon plasma: Comparing and benchmarking alternate numerical methods. <i>Physical Review C</i> , 2020 , 101, Numerical evidence of electron hydrodynamic whirlpools in graphene samples. <i>Computers and Fluids</i> , 2018 , 172, 644-650 Lattice Wigner equation. <i>Physical Review E</i> , 2018 , 97, 013308 Spread of consensus in self-organized groups of individuals: Hydrodynamics matters. <i>Europhysics Letters</i> , 2016 , 113, 18001	2.7 2.8 2.4 1.6	4 4 4

139	Radiation pressure vs. friction effects in the description of the Poynting-Robertson scattering process. <i>Europhysics Letters</i> , 2012 , 97, 40007	1.6	4
138	Wetting/dewetting transition of two-phase flows in nano-corrugated channels. <i>Journal of Computer-Aided Materials Design</i> , 2007 , 14, 447-456		4
137	Multiscale simulations of complex systems: computation meets reality. <i>Scientific Modeling and Simulation SMNS</i> , 2008 , 15, 59-65		4
136	Boundary effects on the onset of nonlinear flow in porous domains. <i>Europhysics Letters</i> , 2006 , 73, 858-	8 6 36	4
135	Discrete dispersion relations and the breaking of Lorentz invariance. <i>Classical and Quantum Gravity</i> , 2006 , 23, 1989-1997	3.3	4
134	A COMPARISON OF SINGLE-TIME RELAXATION LATTICE BOLTZMANN SCHEMES WITH ENHANCED STABILITY. <i>International Journal of Modern Physics C</i> , 2006 , 17, 1375-1390	1.1	4
133	Lattice gas modeling of nanowhisker growth. <i>Physical Review E</i> , 2007 , 76, 031601	2.4	4
132	Effects of collisions against thermal impurities in the dynamics of a trapped fermion gas. <i>Physical Review A</i> , 2004 , 70,	2.6	4
131	Lattice Boltzmann model with hierarchical interactions. <i>Physica A: Statistical Mechanics and Its Applications</i> , 2003 , 325, 477-484	3.3	4
130	The Lattice Boltzmann Equation: Theory and Application. <i>NATO ASI Series Series B: Physics</i> , 1992 , 187-20	03	4
130	The Lattice Boltzmann Equation: Theory and Application. <i>NATO ASI Series Series B: Physics</i> , 1992 , 187-20. Wet to dry self-transitions in dense emulsions: From order to disorder and back. <i>Physical Review Fluids</i> , 2021 , 6,	2.8	4
	Wet to dry self-transitions in dense emulsions: From order to disorder and back. <i>Physical Review</i>		
129	Wet to dry self-transitions in dense emulsions: From order to disorder and back. <i>Physical Review Fluids</i> , 2021 , 6, Computational performance of SequenceL coding of the lattice Boltzmann method for	2.8	4
129	Wet to dry self-transitions in dense emulsions: From order to disorder and back. <i>Physical Review Fluids</i> , 2021 , 6, Computational performance of SequenceL coding of the lattice Boltzmann method for multi-particle flow simulations. <i>Computer Physics Communications</i> , 2017 , 213, 92-99 Isotropic finite-difference discretization of stochastic conservation laws preserving detailed	2.8	3
129 128 127	Wet to dry self-transitions in dense emulsions: From order to disorder and back. <i>Physical Review Fluids</i> , 2021 , 6, Computational performance of SequenceL coding of the lattice Boltzmann method for multi-particle flow simulations. <i>Computer Physics Communications</i> , 2017 , 213, 92-99 Isotropic finite-difference discretization of stochastic conservation laws preserving detailed balance. <i>Journal of Statistical Mechanics: Theory and Experiment</i> , 2017 , 2017, 103202	2.8 4.2 1.9	3
129 128 127	Wet to dry self-transitions in dense emulsions: From order to disorder and back. <i>Physical Review Fluids</i> , 2021 , 6, Computational performance of SequenceL coding of the lattice Boltzmann method for multi-particle flow simulations. <i>Computer Physics Communications</i> , 2017 , 213, 92-99 Isotropic finite-difference discretization of stochastic conservation laws preserving detailed balance. <i>Journal of Statistical Mechanics: Theory and Experiment</i> , 2017 , 2017, 103202 Of Naturalness and Complexity. <i>European Physical Journal Plus</i> , 2019 , 134, 1	2.8 4.2 1.9	3 3
129 128 127 126	Wet to dry self-transitions in dense emulsions: From order to disorder and back. <i>Physical Review Fluids</i> , 2021 , 6, Computational performance of SequenceL coding of the lattice Boltzmann method for multi-particle flow simulations. <i>Computer Physics Communications</i> , 2017 , 213, 92-99 Isotropic finite-difference discretization of stochastic conservation laws preserving detailed balance. <i>Journal of Statistical Mechanics: Theory and Experiment</i> , 2017 , 2017, 103202 Of Naturalness and Complexity. <i>European Physical Journal Plus</i> , 2019 , 134, 1 Lattice kinetic approach to non-equilibrium flows 2016 , Coupled RapidCell and lattice Boltzmann models to simulate hydrodynamics of bacterial transport in response to chemoattractant gradients in confined domains. <i>Microfluidics and Nanofluidics</i> , 2016 ,	2.8 4.2 1.9 3.1	4 3 3 3

121	A fluctuating lattice Boltzmann scheme for the one-dimensional KPZ equation. <i>Physica A: Statistical Mechanics and Its Applications</i> , 2012 , 391, 4557-4563	3.3	3
120	Markovian equations of motion for non-Markovian coarse-graining and properties for graphene blobs. <i>New Journal of Physics</i> , 2013 , 15, 125015	2.9	3
119	Discrete simulation of fluid dynamics: applications. <i>Philosophical Transactions Series A, Mathematical, Physical, and Engineering Sciences</i> , 2011 , 369, 2384-6	3	3
118	Microscopic simulation in biology and medicine. Current Medicinal Chemistry, 2007, 14, 625-37	4.3	3
117	On the use of lattice Fokker-Planck models for hydrodynamics. <i>Europhysics Letters</i> , 2006 , 75, 399-405	1.6	3
116	Lattice mesoscopic model of dynamically heterogeneous fluids. <i>Physical Review Letters</i> , 2005 , 95, 22450	0₹.4	3
115	Multi-Representation Techniques for Multi-Scale Simulation: Reactive Microflows in a Catalytic Converter. <i>Molecular Simulation</i> , 2000 , 25, 13-26	2	3
114	Lattice Boltzmann method on a cluster of IBM RISC system/6000 workstations. <i>Concurrency and Computation: Practice and Experience</i> , 1993 , 5, 359-366		3
113	A four-color parallel algorithm for the solution of a two-dimensional advection-diffusion equation with the finite element method. <i>Journal of Scientific Computing</i> , 1989 , 4, 61-70	2.3	3
112	Self-similar evolution of one-dimensional Fokker-Planck systems. <i>Physical Review A</i> , 1987 , 36, 5020-502	42.6	3
111	Lattice Boltzmann simulations capture the multiscale physics of soft flowing crystals. <i>Philosophical Transactions Series A, Mathematical, Physical, and Engineering Sciences</i> , 2020 , 378, 20190406	3	3
110	Discrete fluidization of dense monodisperse emulsions in neutral wetting microchannels. <i>Soft Matter</i> , 2020 , 16, 651-658	3.6	3
109	Toward exascale design of soft mesoscale materials. <i>Journal of Computational Science</i> , 2020 , 46, 101175	53.4	3
108	Shear dynamics of confined bijels. <i>AIP Advances</i> , 2020 , 10, 095304	1.5	3
107	Lattice Boltzmann multicomponent model for direct-writing printing. <i>Physics of Fluids</i> , 2021 , 33, 042103	3 4.4	3
106	Translocation Dynamics of High-Internal Phase Double Emulsions in Narrow Channels. <i>Langmuir</i> , 2021 , 37, 9026-9033	4	3
105	A fast and efficient deep learning procedure for tracking droplet motion in dense microfluidic emulsions. <i>Philosophical Transactions Series A, Mathematical, Physical, and Engineering Sciences</i> , 2021 , 379, 20200400	3	3
104	Quantized Alternate Current on Curved Graphene. <i>Condensed Matter</i> , 2019 , 4, 39	1.8	2

103	A Multiresolution Mesoscale Approach for Microscale Hydrodynamics. <i>Advanced Theory and Simulations</i> , 2020 , 3, 1900250	3.5	2
102	Lattice Boltzmann implementation of the three-dimensional Ben-Naim potential for water-like fluids. <i>Journal of Chemical Physics</i> , 2013 , 138, 124105	3.9	2
101	Paradoxical ratcheting in cornstarch. <i>Physics of Fluids</i> , 2015 , 27, 103101	4.4	2
100	Short-Lived Lattice Quasiparticles for Strongly Interacting Fluids. <i>Entropy</i> , 2015 , 17, 6169-6178	2.8	2
99	ONE-DIMENSIONAL QUANTUM LATTICE BOLTZMANN SCHEME FOR THE NONLINEAR DIRAC EQUATION. <i>International Journal of Modern Physics C</i> , 2013 , 24, 1340001	1.1	2
98	Capillary filling with randomly coated walls. <i>Journal of Statistical Mechanics: Theory and Experiment</i> , 2009 , 2009, L02001	1.9	2
97	Modeling Elastic Walls in Lattice Boltzmann Simulations of Arterial Blood Flow. <i>IFAC Postprint Volumes IPPV / International Federation of Automatic Control</i> , 2012 , 45, 936-941		2
96	Clustering Instability in Granular Gases: A Mesoscopic Investigation. <i>International Journal of Modern Physics C</i> , 1997 , 08, 999-1008	1.1	2
95	Mass Transfer Improvements in Catalytic Converter Channels: An Hybrid BGK-Finite Volume Numerical Simulation Method 1997 ,		2
94	MUPHY: A parallel high performance MUlti PHYsics/Scale code. <i>Parallel and Distributed Processing Symposium (IPDPS), Proceedings of the International Conference on</i> , 2008 ,		2
93	Density fluctuations in lattice-Boltzmann simulations of multiphase fluids in a closed system. <i>Physica A: Statistical Mechanics and Its Applications</i> , 2007 , 374, 691-698	3.3	2
92	MESOSCOPIC MODELLING OF FLUID FLOWS IN MICRO AND NANO CHANNEL. International Journal of Modern Physics C, 2007 , 18, 758-765	1.1	2
91	A lattice Boltzmann model with random dynamical constraints. <i>European Physical Journal B</i> , 2004 , 39, 241-247	1.2	2
90	A particle-dynamics study of dissipation in colliding clouds of ultracold fermions. <i>Philosophical Transactions Series A, Mathematical, Physical, and Engineering Sciences</i> , 2004 , 362, 1605-12	3	2
89	Kinetic Approach to Lattice Quantum Mechanics. Lecture Notes in Computer Science, 2002, 114-122	0.9	2
88	Hydrodynamic behaviour of the Lattice Boltzmann Equation 1990 , 39-48		2
87	On the Effects of Reactant Flow Rarefaction on Heterogeneous Catalysis: a Regularized Lattice Boltzmann Study. <i>Communications in Computational Physics</i> , 2018 , 23,	2.4	2
86	Towards a self-consistent Boltzmann's kinetic model of fluid turbulence. <i>Journal of Turbulence</i> , 2020 , 21, 375-385	2.1	2

(2013-2020)

85	Probing bulk viscosity in relativistic flows. <i>Philosophical Transactions Series A, Mathematical, Physical, and Engineering Sciences</i> , 2020 , 378, 20190409	3	2
84	Optimized Modeling and Design of a PCM-Enhanced H2 Storage. <i>Energies</i> , 2021 , 14, 1554	3.1	2
83	Rayleigh-Bflard convection of a model emulsion: anomalous heat-flux fluctuations and finite-size droplet effects. <i>Soft Matter</i> , 2021 , 17, 3709-3721	3.6	2
82	Microscale modelling of dielectrophoresis assembly processes. <i>Philosophical Transactions Series A, Mathematical, Physical, and Engineering Sciences</i> , 2021 , 379, 20200407	3	2
81	Deformation and breakup dynamics of droplets within a tapered channel. <i>Physics of Fluids</i> , 2021 , 33, 082008	4.4	2
80	Stochastic Jetting and Dripping in Confined Soft Granular Flows <i>Physical Review Letters</i> , 2022 , 128, 128	B ⊕ Ω ₄ 1	2
79	LBcuda: A high-performance CUDA port of LBsoft for simulation of colloidal systems. <i>Computer Physics Communications</i> , 2022 , 277, 108380	4.2	2
78	Microvorticity fluctuations affect the structure of thin fluid films. <i>Physical Review E</i> , 2019 , 100, 042606	2.4	1
77	Simulating blood rheology across scales: A hybrid LB-particle approach. <i>International Journal of Modern Physics C</i> , 2019 , 30, 1941003	1.1	1
76	Effects of Advective-Diffusive Transport of Multiple Chemoattractants on Motility of Engineered Chemosensory Particles in Fluidic Environments. <i>Entropy</i> , 2019 , 21,	2.8	1
75	Multiparticle collision dynamics for fluid interfaces with near-contact interactions. <i>Journal of Chemical Physics</i> , 2020 , 152, 144101	3.9	1
74	Semi-Lagrangian implicit Bhatnagar-Gross-Krook collision model for the finite-volume discrete Boltzmann method. <i>Physical Review E</i> , 2020 , 101, 063301	2.4	1
73	A coupled lattice Boltzmann-Multiparticle collision method for multi-resolution hydrodynamics. Journal of Computational Science, 2020 , 44, 101160	3.4	1
72	Multicomponent Lattice Boltzmann Models for Biological Applications 2018 , 357-370		1
71	Effects of friction forces on the motion of objects in smoothly matched interior/exterior spacetimes. <i>Classical and Quantum Gravity</i> , 2013 , 30, 025009	3.3	1
70	Effects of nanoparticles on the dynamic morphology of electrified jets. <i>Europhysics Letters</i> , 2017 , 119, 44001	1.6	1
69	High-order kinetic relaxation schemes as high-accuracy Poisson solvers. <i>International Journal of Modern Physics C</i> , 2015 , 26, 1550055	1.1	1
68	Molecular Dynamics Simulations of Nanoparticle Interactions with a Planar Wall: Does Shape Matter?. <i>Communications in Computational Physics</i> , 2013 , 13, 900-915	2.4	1

67	Discrete simulation of fluid dynamics: methods. <i>Philosophical Transactions Series A, Mathematical, Physical, and Engineering Sciences</i> , 2011 , 369, 2152-4	3	1
66	Prospective Merger Between Car-Parrinello and Lattice Boltzmann Methods for Quantum Many-Body Simulations. <i>Communications in Computational Physics</i> , 2011 , 9, 1137-1151	2.4	1
65	Shear banding from lattice kinetic models with competing interactions. <i>Philosophical Transactions Series A, Mathematical, Physical, and Engineering Sciences</i> , 2011 , 369, 2439-47	3	1
64	Heterogeneous diffuse interfaces: a new mechanism for arrested coarsening in binary mixtures. Heterogeneous diffuse interfaces. <i>European Physical Journal E</i> , 2011 , 34, 93	1.5	1
63	A NOTE ON THE ANALOGY BETWEEN KOLMOGOROV TURBULENCE AND QUANTUM GRAVITY. International Journal of Modern Physics C, 2010 , 21, 1329-1340	1.1	1
62	NUMERICAL SIMULATION OF QUANTUM STATE REDUCTION IN BOSE E INSTEIN CONDENSATES WITH ATTRACTIVE INTERACTIONS. <i>International Journal of Modern Physics C</i> , 2010 , 21, 629-646	1.1	1
61	Lattice Boltzmann Methods for Multiscale Fluid Problems 2005 , 2475-2486		1
60	A lattice Boltzmann study of non-hydrodynamic effects in shell models of turbulence. <i>Physica D: Nonlinear Phenomena</i> , 2004 , 197, 303-312	3.3	1
59	Dissipative Quantum Dynamics from Wigner Distributions. AIP Conference Proceedings, 2002,	О	1
58	Electronic Structure Calculations Using Self-Adaptive Multiscale Voronoi Basis Functions. <i>Journal of Statistical Physics</i> , 2002 , 107, 159-171	1.5	1
57	Simulating the G-protein cAMP pathway with a two-compartment reactive lattice gas. <i>Theory in Biosciences</i> , 2005 , 123, 413-29	1.3	1
56	A parallel simulator of the immune response. Lecture Notes in Computer Science, 1998, 161-172	0.9	1
55	Reply to "Comment on 'Extended self-similarity in turbulent flows' ". <i>Physical Review E</i> , 1995 , 51, 2672-	267/3	1
54	The lattice Boltzmann equation for turbulence. <i>Nuclear Physics, Section B, Proceedings Supplements</i> , 1990 , 17, 708-711		1
53			1
52	Finite elements applied to plasma waves. Computer Physics Reports, 1987, 6, 335-349		1
51	Effects of anisotropic scattering on the distribution of charged particles in an electric field. <i>Societa Italiana Di Fisica Nuovo Cimento B-General Physics, Relativity Astronomy and Mathematical Physics and Methods</i> , 1985 , 85, 208-216		1
50	Integral form of the Boltzmann equation for the forced diffusion of charged particles in anisotropically scattering media. <i>Meccanica</i> , 1981 , 16, 67-74	2.1	1

49	Go-with-the-Flow Lattice Boltzmann Methods for Tracer Dynamics. Lecture Notes in Physics, 2002, 267-	2&5 8	1
48	Intermittency in channel-flow turbulence 1999 , 313-318		1
47	Microscopic and Mesoscopic Simulations of Complex Flows with Cellular Automata and Related Techniques 1991 , 1031-1054		1
46	Benchmarking the parallel FIRE code on IBM SP1-2 scalable parallel platforms. <i>Lecture Notes in Computer Science</i> , 1995 , 640-645	0.9	1
45	Scaling Exponents in Turbulent Channel Flow. Fluid Mechanics and Its Applications, 1998, 159-162	0.2	1
44	A Lattice Boltzmann Method for relativistic rarefied flows in (2+1) dimensions. <i>Journal of Computational Science</i> , 2021 , 51, 101320	3.4	1
43	Complex Flow Simulation via Lattice Boltzmann Method 2016 , 38-1-38-30		1
42	Disordered interfaces in soft fluids with suspended colloids. <i>International Journal of Modern Physics C</i> , 2019 , 30, 1941004	1.1	1
41	Multilevel Lattice Boltzmann-Particle Dynamics simulations at the Physics-Biology interface. <i>Journal of Physics: Conference Series</i> , 2018 , 1136, 012013	0.3	1
40	Tracking droplets in soft granular flows with deep learning techniques. <i>European Physical Journal Plus</i> , 2021 , 136, 864	3.1	1
39	Lattice Boltzmann Simulation of Thermal Microflows with Heterogenuous Catalysis. <i>Lecture Notes in Computer Science</i> , 2003 , 957-966	0.9	1
38	The Role of Very Low-Reynolds Hydrodynamics on the Transfer of Information Among Active Agents. <i>Journal of Statistical Physics</i> , 2015 , 161, 1390-1403	1.5	O
37	Analysis of Carleman Linearization of Lattice Boltzmann. Fluids, 2022, 7, 24	1.6	О
36	Playing with Casimir in the vacuum sandbox. <i>European Physical Journal C</i> , 2021 , 81, 1	4.2	О
35	Projecting LBM performance on Exascale class Architectures: a tentative outlook. <i>Journal of Computational Science</i> , 2021 , 55, 101447	3.4	О
34	Zero Sales Resistance: The Dark Side of Big Data and Artificial Intelligence <i>Cyberpsychology, Behavior, and Social Networking</i> , 2022 , 25, 169-173	4.4	О
33	Dynamic symmetry-breaking in mutually annihilating fluids with selective interfaces. <i>Journal of Statistical Mechanics: Theory and Experiment</i> , 2019 , 2019, 083215	1.9	
32	The Lattice Boltzmann Method as a General Framework for Blood Flow Modelling and Simulations 2013 , 153-170		

31	Cooling Effect of the Richtmyer-Meshkov Instability. <i>ESAIM Proceedings and Surveys</i> , 2015 , 52, 66-75	0.9
30	Lattice Boltzmann Model for Electronic Structure Simulations. <i>Journal of Physics: Conference Series</i> , 2015 , 640, 012018	0.3
29	ANALOGY BETWEEN TURBULENCE AND QUANTUM GRAVITY: BEYOND KOLMOGOROV'S 1941 THEORY. International Journal of Modern Physics C, 2012 , 23, 1250001	1.1
28	Lattice Boltzmann scheme for fluids with dynamic heterogeneities. <i>Physical Review E</i> , 2006 , 73, 066709	2.4
27	Direct Simulation of Fluid Transport at Solid Interfaces with a Multiscale Lattice-Boltzmann Finite-Volume Method. <i>Applied Rheology</i> , 2004 , 14, 12-21	1.2
26	Learning cascade in the immune system dynamics: a numerical simulation. <i>Computer Physics Communications</i> , 1999 , 121-122, 122-125	4.2
25	Digital Physics Simulations of Reactive Flow in a Catalytic Converter. <i>Journal of Scientific Computing</i> , 1999 , 14, 211-222	2.3
24	Internal combustion engine design on IBM platforms. IBM Systems Journal, 1992, 31, 774-787	
23	Finite element modelling of weak plasma turbulence. <i>Computer Methods in Applied Mechanics and Engineering</i> , 1989 , 75, 543-556	5.7
22	Lattice-gas hydrodynamics on the IBM 3090 Vector Facility. <i>IBM Journal of Research and Development</i> , 1989 , 33, 136-148	2.5
21	Current generation in fusion plasmas by injection of radiofrequency waves: Finite-element models on IBM 3090/VF. <i>Nuovo Cimento Della Societa Italiana Di Fisica D - Condensed Matter, Atomic, Molecular and Chemical Physics, Biophysics</i> , 1987 , 9, 517-539	
20	Triangular versus square lattice gas automata for the analysis of two-dimensional vortex fields. Journal of Physics A, 1988 , 21, L43-L49	
19	An investigation of fractal dimensions in two-dimensional lattice gas turbulence. <i>Journal of Physics A</i> , 1988 , 21, L771-L776	
18	Turbomachine flow simulations with a multiscale Lattice Boltzmann Method 2001 , 383-390	
17	Multiscale Modeling of Biopolymer Translocation Through a Nanopore. <i>Lecture Notes in Computer Science</i> , 2007 , 786-793	0.9
16	Multiscale simulations of complex systems: computation meets reality. <i>Lecture Notes in Computational Science and Engineering</i> , 2008 , 59-65	0.3
15	Quantum Lattice Boltzmann Study of Random-Mass Dirac Fermions in One Dimension 2018 , 321-330	
14	A Lattice Boltzmann Scheme for the Burger Equation 1990 , 320-321	

LIST OF PUBLICATIONS

Introduction to the Lattice Boltzmann Equation for Fluid Dynamics. *NATO ASI Series Series B: Physics* , **1990**, 329-334

12	Extended Self Similarity and Convective Turbulence. Fluid Mechanics and Its Applications, 1995, 26-30	0.2
11	Mesoscopic particle models of fluid flows. <i>CISM International Centre for Mechanical Sciences, Courses and Lectures</i> , 2014 , 137-165	0.6
10	Relativistic anti-fragility. European Physical Journal Plus, 2020 , 135, 1	3.1
9	Three-stage multiscale modelling of the NMDA neuroreceptor. <i>Molecular Physics</i> ,e1928312	1.7
8	Minimal kinetic theory: a mathematical framework for non-equilibrium flowing matter. <i>Journal of Physics: Conference Series</i> , 2016 , 681, 012006	0.3
7	Towards a mean-field kinetic model of electroweak baryogenesis. <i>Journal of Physics: Conference Series</i> , 2019 , 1354, 012001	0.3
6	Spatial interference between infectious hotspots: Epidemic condensation and optimal windspeed. <i>International Journal of Modern Physics C</i> , 2021 , 32, 2150044	1.1
5	Lattice propagators and Haldane-Wu fractional statistics. <i>Europhysics Letters</i> , 2018 , 122, 10002	1.6
4	In-silico analysis of airflow dynamics and particle transport within a human nasal cavity. <i>Journal of Computational Science</i> , 2021 , 54, 101411	3.4
3	Reply to: Models of flow through sponges must consider the sponge tissue <i>Nature</i> , 2022 , 603, E26-E2	8 50.4
2	Dynamics of polydisperse multiple emulsions in microfluidic channels <i>Physical Review E</i> , 2021 , 104, 06	5112

Lattice Boltzmann Methods for Multiscale Fluid Problems **2005**, 2475-2486