Curtis McCully

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/386565/publications.pdf

Version: 2024-02-01

139 139 139 11079
all docs docs citations times ranked citing authors

#	Article	IF	CITATIONS
1	The Astropy Project: Building an Open-science Project and Status of the v2.0 Core Package [*] . Astronomical Journal, 2018, 156, 123.	1.9	4,142
2	THE CLUSTER LENSING AND SUPERNOVA SURVEY WITH HUBBLE: AN OVERVIEW. Astrophysical Journal, Supplement Series, 2012, 199, 25.	3.0	659
3	Optical emission from a kilonova following a gravitational-wave-detected neutron-star merger. Nature, 2017, 551, 64-66.	13.7	417
4	TYPE lax SUPERNOVAE: A NEW CLASS OF STELLAR EXPLOSION. Astrophysical Journal, 2013, 767, 57.	1.6	295
5	Exclusion of a luminous red giant as a companion star to the progenitor of supernova SN 2011fe. Nature, 2011, 480, 348-350.	13.7	274
6	The diversity of Type II supernova versus the similarity in their progenitors. Monthly Notices of the Royal Astronomical Society, 2016, 459, 3939-3962.	1.6	227
7	Multiple images of a highly magnified supernova formed by an early-type cluster galaxy lens. Science, 2015, 347, 1123-1126.	6.0	202
8	Follow Up of GW170817 and Its Electromagnetic Counterpart by Australian-Led Observing Programmes. Publications of the Astronomical Society of Australia, 2017, 34, .	1.3	142
9	A luminous, blue progenitor system for the type lax supernova 2012Z. Nature, 2014, 512, 54-56.	13.7	136
10	SN 2015bn: A DETAILED MULTI-WAVELENGTH VIEW OF A NEARBY SUPERLUMINOUS SUPERNOVA. Astrophysical Journal, 2016, 826, 39.	1.6	133
11	TYPE-la SUPERNOVA RATES TO REDSHIFT 2.4 FROM CLASH: THE CLUSTER LENSING AND SUPERNOVA SURVEY WITH HUBBLE. Astrophysical Journal, 2014, 783, 28.	1.6	132
12	SNÂ2012cg: EVIDENCE FOR INTERACTION BETWEEN A NORMAL SN Ia AND A NON-DEGENERATE BINARY COMPANION. Astrophysical Journal, 2016, 820, 92.	1.6	132
13	The Rapid Reddening and Featureless Optical Spectra of the Optical Counterpart of GW170817, AT 2017gfo, during the First Four Days. Astrophysical Journal Letters, 2017, 848, L32.	3.0	129
14	Revisiting Optical Tidal Disruption Events with iPTF16axa. Astrophysical Journal, 2017, 842, 29.	1.6	124
15	RAPIDLY RISING TRANSIENTS IN THE SUPERNOVA—SUPERLUMINOUS SUPERNOVA GAP. Astrophysical Journal, 2016, 819, 35.	1.6	122
16	TYPE Ia SUPERNOVA RATE MEASUREMENTS TO REDSHIFT 2.5 FROM CANDELS: SEARCHING FOR PROMPT EXPLOSIONS IN THE EARLY UNIVERSE. Astronomical Journal, 2014, 148, 13.	1.9	121
17	Early Blue Excess from the Type Ia Supernova 2017cbv and Implications for Its Progenitor. Astrophysical Journal Letters, 2017, 845, L11.	3.0	120
18	Extensive HST ultraviolet spectra and multiwavelength observations of SN 2014J in M82 indicate reddening and circumstellar scattering by typical dust. Monthly Notices of the Royal Astronomical Society, 2014, 443, 2887-2906.	1.6	112

#	Article	IF	CITATIONS
19	Energetic eruptions leading to a peculiar hydrogen-rich explosion of a massive star. Nature, 2017, 551, 210-213.	13.7	112
20	Real-time processing of the imaging data from the network of Las Cumbres Observatory Telescopes using BANZAL , 2018, , .		108
21	Extreme magnification of an individual star at redshift 1.5 by a galaxy-cluster lens. Nature Astronomy, 2018, 2, 334-342.	4.2	97
22	THE RATE OF CORE COLLAPSE SUPERNOVAE TO REDSHIFT 2.5 FROM THE CANDELS AND CLASH SUPERNOVA SURVEYS. Astrophysical Journal, 2015, 813, 93.	1.6	93
23	Hydrogen-poor Superluminous Supernovae with Late-time \hat{Hl} Emission: Three Events From the Intermediate Palomar Transient Factory. Astrophysical Journal, 2017, 848, 6.	1.6	91
24	Investigating the properties of stripped-envelope supernovae; what are the implications for their progenitors?. Monthly Notices of the Royal Astronomical Society, 2019, 485, 1559-1578.	1.6	90
25	Comprehensive observations of the bright and energetic Type lax SN 2012Z: Interpretation as a Chandrasekhar mass white dwarf explosion. Astronomy and Astrophysics, 2015, 573, A2.	2.1	88
26	SUPERLUMINOUS SUPERNOVA SN 2015bn IN THE NEBULAR PHASE: EVIDENCE FOR THE ENGINE-POWERED EXPLOSION OF A STRIPPED MASSIVE STAR. Astrophysical Journal Letters, 2016, 828, L18.	3.0	88
27	The Early Detection and Follow-up of the Highly Obscured Type II Supernova 2016ija/DLT16am ^{â^—} . Astrophysical Journal, 2018, 853, 62.	1.6	87
28	A new hybrid framework to efficiently model lines of sight to gravitational lenses. Monthly Notices of the Royal Astronomical Society, 2014, 443, 3631-3642.	1.6	85
29	Optical Follow-up of Gravitational-wave Events with Las Cumbres Observatory. Astrophysical Journal Letters, 2017, 848, L33.	3.0	80
30	Type Ibn Supernovae Show Photometric Homogeneity and Spectral Diversity at Maximum Light. Astrophysical Journal, 2017, 836, 158.	1.6	79
31	DEJA VU ALL OVER AGAIN: THE REAPPEARANCE OF SUPERNOVA REFSDAL. Astrophysical Journal Letters, 2016, 819, L8.	3.0	76
32	Supernova 2013by: a Type IIL supernova with a IIP-like light-curveÂdropâ~ Monthly Notices of the Royal Astronomical Society, 2015, 448, 2608-2616.	1.6	74
33	Measuring nickel masses in Type Ia supernovae using cobalt emission in nebular phase spectra. Monthly Notices of the Royal Astronomical Society, 2015, 454, 3816-3842.	1.6	72
34	ILLUMINATING A DARK LENS: A TYPE Ia SUPERNOVA MAGNIFIED BY THE FRONTIER FIELDS GALAXY CLUSTER ABELL 2744. Astrophysical Journal, 2015, 811, 70.	1.6	67
35	THE DISCOVERY OF THE MOST DISTANT KNOWN TYPE Ia SUPERNOVA AT REDSHIFT 1.914. Astrophysical Journal, 2013, 768, 166.	1.6	66
36	SPECTROSCOPIC OBSERVATIONS OF SN 2012fr: A LUMINOUS, NORMAL TYPE Ia SUPERNOVA WITH EARLY HIGH-VELOCITY FEATURES AND A LATE VELOCITY PLATEAU. Astrophysical Journal, 2013, 770, 29.	1.6	66

#	Article	IF	CITATIONS
37	SN REFSDAL: PHOTOMETRY AND TIME DELAY MEASUREMENTS OF THE FIRST EINSTEIN CROSS SUPERNOVA. Astrophysical Journal, 2016, 820, 50.	1.6	65
38	On the nature of hydrogen-rich superluminous supernovae. Monthly Notices of the Royal Astronomical Society, 2018, 475, 1046-1072.	1.6	65
39	POSSIBLE DETECTION OF THE STELLAR DONOR OR REMNANT FOR THE TYPE lax SUPERNOVA 2008ha. Astrophysical Journal, 2014, 792, 29.	1.6	60
40	Two New Calcium-rich Gap Transients in Group and Cluster Environments. Astrophysical Journal, 2017, 836, 60.	1.6	60
41	Photometric and Spectroscopic Properties of Type Ia Supernova 2018oh with Early Excess Emission from the Kepler 2 Observations. Astrophysical Journal, 2019, 870, 12.	1.6	60
42	An outflow powers the optical rise of the nearby, fast-evolving tidal disruption event AT2019qiz. Monthly Notices of the Royal Astronomical Society, 2020, 499, 482-504.	1.6	58
43	A new class of flares from accreting supermassive black holes. Nature Astronomy, 2019, 3, 242-250.	4.2	57
44	The BUFFALO HST Survey. Astrophysical Journal, Supplement Series, 2020, 247, 64.	3.0	57
45	<i>HUBBLE SPACE TELESCOPE</i> AND GROUND-BASED OBSERVATIONS OF THE TYPE lax SUPERNOVAE SN 2005hk AND SN 2008A. Astrophysical Journal, 2014, 786, 134.	1.6	56
46	The Palomar Transient Factory Core-collapse Supernova Host-galaxy Sample. I. Host-galaxy Distribution Functions and Environment Dependence of Core-collapse Supernovae. Astrophysical Journal, Supplement Series, 2021, 255, 29.	3.0	56
47	Nebular-phase spectra of nearby Type Ia Supernovae. Monthly Notices of the Royal Astronomical Society, 2017, 472, 3437-3454.	1.6	53
48	Short-lived Circumstellar Interaction in the Low-luminosity Type IIP SN 2016bkv. Astrophysical Journal, 2018, 861, 63.	1.6	52
49	Nebular Spectroscopy of the "Blue Bump―Type Ia Supernova 2017cbv. Astrophysical Journal, 2018, 863, 24.	1.6	50
50	Constraints on the Progenitor of SN 2016gkg from Its Shock-cooling Light Curve. Astrophysical Journal Letters, 2017, 837, L2.	3.0	49
51	Early Observations of the Type Ia Supernova iPTF 16abc: A Case of Interaction with Nearby, Unbound Material and/or Strong Ejecta Mixing. Astrophysical Journal, 2018, 852, 100.	1.6	49
52	The Progenitor and Early Evolution of the Type IIb SN 2016gkg. Astrophysical Journal Letters, 2017, 836, L12.	3.0	49
53	Hydrogen-rich supernovae beyond the neutrino-driven core-collapse paradigm. Nature Astronomy, 2017, 1, 713-720.	4.2	48
54	SN 2019ehk: A Double-peaked Ca-rich Transient with Luminous X-Ray Emission and Shock-ionized Spectral Features. Astrophysical Journal, 2020, 898, 166.	1.6	48

#	Article	IF	Citations
55	The electron-capture origin of supernova 2018zd. Nature Astronomy, 2021, 5, 903-910.	4.2	47
56	THREE GRAVITATIONALLY LENSED SUPERNOVAE BEHIND CLASH GALAXY CLUSTERS. Astrophysical Journal, 2014, 786, 9.	1.6	45
57	A TYPE Ia SUPERNOVA AT REDSHIFT 1.55 IN (i) HUBBLE SPACE TELESCOPE (i) INFRARED OBSERVATIONS FROM CANDELS. Astrophysical Journal, 2012, 746, 5.	1.6	44
58	The Type II-P Supernova 2017eaw: From Explosion to the Nebular Phase. Astrophysical Journal, 2019, 876, 19.	1.6	42
59	SN REFSDAL: CLASSIFICATION AS A LUMINOUS AND BLUE SN 1987A-LIKE TYPE II SUPERNOVA. Astrophysical Journal, 2016, 831, 205.	1.6	40
60	TWO SNe Ia AT REDSHIFT $\hat{a}^{-1}\!\!/42$: IMPROVED CLASSIFICATION AND REDSHIFT DETERMINATION WITH MEDIUM-BA INFRARED IMAGING. Astronomical Journal, 2015, 150, 156.	NP.9	39
61	The origin of UVâ€optical variability in AGN and test of disc models: XMMâ€ <i>Newton</i> and groundâ€based observations of NGC 4395. Astronomische Nachrichten, 2016, 337, 500-506.	0.6	38
62	SN 2016coi/ASASSN-16fp: an example of residual helium in a typelc supernova?. Monthly Notices of the Royal Astronomical Society, 2018, 478, 4162-4192.	1.6	37
63	Two peculiar fast transients in a strongly lensed host galaxy. Nature Astronomy, 2018, 2, 324-333.	4.2	36
64	A nearby super-luminous supernova with a long pre-maximum & "plateau―and strong C II features. Astronomy and Astrophysics, 2018, 620, A67.	2.1	36
65	Delayed Circumstellar Interaction for Type Ia SN 2015cp Revealed by an HST Ultraviolet Imaging Survey. Astrophysical Journal, 2019, 871, 62.	1.6	36
66	The tidal disruption event AT 2018hyz – I. Double-peaked emission lines and a flat Balmer decrement. Monthly Notices of the Royal Astronomical Society, 2020, 498, 4119-4133.	1.6	35
67	Early observations of the nearby Type Ia supernova SNÂ2015F. Monthly Notices of the Royal Astronomical Society, 2017, 464, 4476-4494.	1.6	33
68	Type Ibn Supernovae May not all Come from Massive Stars. Astrophysical Journal Letters, 2019, 871, L9.	3.0	32
69	The Young and Nearby Normal Type Ia Supernova 2018gv: UV-optical Observations and the Earliest Spectropolarimetry. Astrophysical Journal, 2020, 902, 46.	1.6	32
70	Extremely late photometry of the nearby SN 2011fe. Monthly Notices of the Royal Astronomical Society, 2017, 472, 2534-2542.	1.6	30
71	NRES: the network of robotic echelle spectrographs. , 2018, , .		30
72	Optical and near-infrared observations of SN 2014ck: an outlier among the Type lax supernovae. Monthly Notices of the Royal Astronomical Society, 2016, 459, 1018-1038.	1.6	29

#	Article	IF	Citations
73	The long-lived Type IIn SN 2015da: Infrared echoes and strong interaction within an extended massive shell. Astronomy and Astrophysics, 2020, 635, A39.	2.1	29
74	Near-infrared and Optical Observations of Type Ic SN 2020oi and Broad-lined Type Ic SN 2020bvc: Carbon Monoxide, Dust, and High-velocity Supernova Ejecta. Astrophysical Journal, 2021, 908, 232.	1.6	29
75	Observations of SN 2017ein Reveal Shock Breakout Emission and a Massive Progenitor Star for a Type Ic Supernova. Astrophysical Journal, 2019, 871, 176.	1.6	27
76	Type II supernovae in low-luminosity host galaxies. Monthly Notices of the Royal Astronomical Society, 2018, 479, 3232-3253.	1.6	26
77	Optical and IR observations of SN 2013L, a Type IIn Supernova surrounded by asymmetric CSM. Monthly Notices of the Royal Astronomical Society, 2017, 471, 4047-4059.	1.6	25
78	The Peculiar Transient AT2018cow: A Possible Origin of a Type Ibn/IIn Supernova. Astrophysical Journal, 2021, 910, 42.	1.6	25
79	SN 2016X: a type II-P supernova with a signature of shock breakout from explosion of a massive red supergiant. Monthly Notices of the Royal Astronomical Society, 2018, 475, 3959-3973.	1.6	24
80	Near-infrared Supernova la Distances: Host Galaxy Extinction and Mass-step Corrections Revisited. Astrophysical Journal, 2021, 923, 237.	1.6	24
81	Signatures of circumstellar interaction in the Type IIL supernova ASASSN-15oz. Monthly Notices of the Royal Astronomical Society, 2019, 485, 5120-5141.	1.6	23
82	The Structure of Tidal Disruption Event Host Galaxies on Scales of Tens to Thousands of Parsecs. Astrophysical Journal, 2020, 891, 93.	1.6	23
83	TOI-481 b and TOI-892 b: Two Long-period Hot Jupiters from the Transiting Exoplanet Survey Satellite. Astronomical Journal, 2020, 160, 235.	1.9	23
84	Red and Reddened: Ultraviolet through Near-infrared Observations of Type Ia Supernova 2017erp*. Astrophysical Journal, 2019, 877, 152.	1.6	22
85	The Early Discovery of SN 2017ahn: Signatures of Persistent Interaction in a Fast-declining Type II Supernova. Astrophysical Journal, 2021, 907, 52.	1.6	22
86	MuSCAT3: a 4-color simultaneous camera for the 2m Faulkes Telescope North. , 2020, , .		22
87	Nebular Hα Limits for Fast Declining SNe Ia. Astrophysical Journal Letters, 2019, 877, L4.	3.0	21
88	Luminous Type II Short-Plateau Supernovae 2006Y, 2006ai, and 2016egz: A Transitional Class from Stripped Massive Red Supergiants. Astrophysical Journal, 2021, 913, 55.	1.6	20
89	A Bright Ultraviolet Excess in the Transitional 02es-like Type Ia Supernova 2019yvq. Astrophysical Journal, 2021, 919, 142.	1.6	20
90	Circumstellar Interaction Powers the Light Curves of Luminous Rapidly Evolving Optical Transients. Astrophysical Journal, 2022, 926, 125.	1.6	20

#	Article	IF	CITATIONS
91	OPTICAL AND ULTRAVIOLET OBSERVATIONS OF THE VERY YOUNG TYPE IIP SN 2014cx IN NGC 337. Astrophysical Journal, 2016, 832, 139.	1.6	19
92	The Gravity Collective: A Search for the Electromagnetic Counterpart to the Neutron Star–Black Hole Merger GW190814. Astrophysical Journal, 2021, 923, 258.	1.6	19
93	Supernova 2013fc in a circumnuclear ring of a luminous infrared galaxy: the big brother of SN 1998S. Monthly Notices of the Royal Astronomical Society, 2016, 456, 323-346.	1.6	18
94	Constraining the Progenitor System of the Type Ia Supernova 2021aefx. Astrophysical Journal Letters, 2022, 933, L45.	3.0	18
95	Still Brighter than Pre-explosion, SN 2012Z Did Not Disappear: Comparing Hubble Space Telescope Observations a Decade Apart. Astrophysical Journal, 2022, 925, 138.	1.6	17
96	Infant-phase reddening by surface Fe-peak elements in a normal type Ia supernova. Nature Astronomy, 2022, 6, 568-576.	4.2	17
97	Discovery and Follow-up Observations of the Young Type Ia Supernova 2016coj. Astrophysical Journal, 2017, 841, 64.	1.6	16
98	SN 2018gjx reveals that some SNe Ibn are SNe IIb exploding in dense circumstellar material. Monthly Notices of the Royal Astronomical Society, 2020, 499, 1450-1467.	1.6	16
99	SNÂ2017gci: a nearby Type I Superluminous Supernova with a bumpy tail. Monthly Notices of the Royal Astronomical Society, 2021, 502, 2120-2139.	1.6	16
100	Constraining the Source of the High-velocity Ejecta in Type Ia SN 2019ein. Astrophysical Journal, 2020, 897, 159.	1.6	16
101	Flash Ionization Signatures in the Type Ibn Supernova SN 2019uo. Astrophysical Journal, 2020, 889, 170.	1.6	15
102	SN 2015ba: a Type IIP supernova with a long plateau. Monthly Notices of the Royal Astronomical Society, 2018, 479, 2421-2442.	1.6	14
103	Discovery and Rapid Follow-up Observations of the Unusual Type II SN 2018ivc in NGC 1068. Astrophysical Journal, 2020, 895, 31.	1.6	14
104	SN 2019muj $\hat{a}\in$ a well-observed Type Iax supernova that bridges the luminosity gap of the class. Monthly Notices of the Royal Astronomical Society, 2020, 501, 1078-1099.	1.6	14
105	Constraints on Cosmic-ray Acceleration Efficiency in Balmer Shocks of Two Young Type Ia Supernova Remnants in the Large Magellanic Cloud. Astrophysical Journal, 2018, 862, 148.	1.6	13
106	A luminous stellar outburst during a long-lasting eruptive phase first, and then SN IIn 2018cnf. Astronomy and Astrophysics, 2019, 628, A93.	2.1	13
107	Constraining Type lax supernova progenitor systems with stellar population age dating. Monthly Notices of the Royal Astronomical Society, 2020, 493, 986-1002.	1.6	12
108	Supernova 2018cuf: A Type IIP Supernova with a Slow Fall from Plateau. Astrophysical Journal, 2020, 906, 56.	1.6	12

#	Article	lF	CITATIONS
109	Circumstellar Medium Constraints on the Environment of Two Nearby Type Ia Supernovae: SN 2017cbv and SN 2020nlb. Astrophysical Journal, 2021, 922, 21.	1.6	11
110	LSQ14efd: observations of the cooling of a shock break-out event in a type Ic Supernova. Monthly Notices of the Royal Astronomical Society, 2017, 471, 2463-2480.	1.6	10
111	The low-luminosity Type II SN 2016aqf: a well-monitored spectral evolution of the Ni/Fe abundance ratio. Monthly Notices of the Royal Astronomical Society, 2020, 497, 361-377.	1.6	10
112	SN 2017fgc: A Fast-expanding Type Ia Supernova Exploded in Massive Shell Galaxy NGC 474. Astrophysical Journal, 2021, 919, 49.	1.6	10
113	Less Than 1% of Core-collapse Supernovae in the Local Universe Occur in Elliptical Galaxies. Astrophysical Journal, 2022, 927, 10.	1.6	10
114	SN 2018agk: A Prototypical Type Ia Supernova with a Smooth Power-law Rise in Kepler (K2). Astrophysical Journal, 2021, 923, 167.	1.6	10
115	Progenitor, environment, and modelling of the interacting transient ATÂ2016jbu (Gaia16cfr). Monthly Notices of the Royal Astronomical Society, 2022, 513, 5666-5685.	1.6	10
116	Photometric and spectroscopic evolution of the interacting transient ATÂ2016jbu(Gaia16cfr). Monthly Notices of the Royal Astronomical Society, 2022, 513, 5642-5665.	1.6	10
117	Optical observations of the 2002cx-like supernova 2014ek and characterizations of SNe lax. Monthly Notices of the Royal Astronomical Society, 2018, 478, 4575-4589.	1.6	9
118	SN 2017cfd: A Normal Type Ia Supernova Discovered Very Young. Astrophysical Journal, 2020, 892, 142.	1.6	9
119	SOAR/Goodman Spectroscopic Assessment of Candidate Counterparts of the LIGO/Virgo Event GW190814*. Astrophysical Journal, 2022, 929, 115.	1.6	9
120	The Exotic Type Ic Broad-lined Supernova SN 2018gep: Blurring the Line between Supernovae and Fast Optical Transients. Astrophysical Journal, 2021, 915, 121.	1.6	8
121	SNÂ2017ivv: two years of evolution of a transitional Type II supernova. Monthly Notices of the Royal Astronomical Society, 2020, 499, 974-992.	1.6	7
122	SN2017jgh: a high-cadence complete shock cooling light curve of a SNÂIIb with the <i>Kepler</i> telescope. Monthly Notices of the Royal Astronomical Society, 2021, 507, 3125-3138.	1.6	7
123	ATÂ2017be - a new member of the class of Intermediate-Luminosity Red Transients. Monthly Notices of the Royal Astronomical Society, 0, , .	1.6	6
124	TOI-1749: an M dwarf with a Trio of Planets including a Near-resonant Pair. Astronomical Journal, 2021, 162, 167.	1.9	6
125	Linking Extragalactic Transients and Their Host Galaxy Properties: Transient Sample, Multiwavelength Host Identification, and Database Construction. Astrophysical Journal, Supplement Series, 2022, 259, 13.	3.0	6
126	Enormous explosion energy of Type IIP SNÂ2017gmr with bipolar 56Ni ejecta. Monthly Notices of the Royal Astronomical Society, 2021, 505, 116-125.	1.6	5

#	Article	IF	Citations
127	HAT-P-58b–HAT-P-64b: Seven Planets Transiting Bright Stars*. Astronomical Journal, 2021, 162, 7.	1.9	5
128	Close, bright, and boxy: the superluminous SN 2018hti. Monthly Notices of the Royal Astronomical Society, 2022, 512, 4484-4502.	1.6	5
129	SN 2015an: a normal luminosity type II supernova with low expansion velocity at early phases. Monthly Notices of the Royal Astronomical Society, 2019, 490, 1605-1619.	1.6	4
130	AT 2019qyl in NGC 300: Internal Collisions in the Early Outflow from a Very Fast Nova in a Symbiotic Binary* $\hat{a} \in Astrophysical Journal, 2021, 920, 127.$	1.6	4
131	Long-term Evolution of Postexplosion Helium-star Companions of Type Iax Supernovae. Astrophysical Journal, 2022, 933, 65.	1.6	4
132	Automatic Échelle Spectrograph Wavelength Calibration. Astronomical Journal, 2020, 160, 25.	1.9	3
133	SN 2020cpg: an energetic link between Type IIb and Ib supernovae. Monthly Notices of the Royal Astronomical Society, 2021, 506, 1832-1849.	1.6	3
134	SNÂ2019hcc: a Type II supernova displaying early O ii lines. Monthly Notices of the Royal Astronomical Society, 2021, 506, 4819-4840.	1.6	3
135	SN 2020acat: an energetic fast rising Type IIb supernova. Monthly Notices of the Royal Astronomical Society, 2022, 513, 5540-5558.	1.6	3
136	The Fast-evolving Type Ib Supernova SN 2015dj in NGC 7371. Astrophysical Journal, 2021, 909, 100.	1.6	2
137	SN 2017hpa: A Nearby Carbon-rich Type la Supernova with a Large Velocity Gradient. Astrophysical Journal, 2021, 909, 176.	1.6	2
138	Low-redshift Type Ia Supernova from the LSQ/LCO Collaboration. Publications of the Astronomical Society of the Pacific, 2021, 133, 044002.	1.0	2
139	Evolution of a Peculiar Type Ibn Supernova SN 2019wep. Astrophysical Journal, 2022, 930, 127.	1.6	2